Skip to main content

Studies on Acid-Base, Hydration-Dehydration and Keto-Enol Equilibria in Aqueous Solutions of α-Ketoacids by Polarography, Linear Sweep Voltammetry and Spectroscopy

  • Chapter
Redox Chemistry and Interfacial Behavior of Biological Molecules
  • 160 Accesses

Abstract

Even when α-ketoacids play an important role as a link between the metabolism of carbohydrates and proteins and their solution chemistry should be of general interest, quantitative information regarding positions of acid-base, keto-enol, and hydration-dehydration equilibria established in their dilute aqueous solutions is rather limited. Only properties of pyruvic acid were studied extensively1, but those of α- ketoglutaric acid received only limited attention1c, 2. For the most complex system represented by oxalacetic acid attention was paid predominantly to keto-enol equilibria3 and only recently the role of hydration yielding a geminal diol has been considered1c, 1f, 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.J. Pedersen, Acta Chem. Scand., 6, 243 (1952).

    Article  CAS  Google Scholar 

  2. M. Becker and H. Strehlow, Z. Elektrochem., 64, 813, 818 (1960).

    CAS  Google Scholar 

  3. S. Ono, M. Takagi and T. Wasa, Collect. Czechoslov. Chem. Commun., 26, 141 (1961).

    CAS  Google Scholar 

  4. M. Eigen, K. Kustin and H. Strehlow, Z. Physikal. Chem., 31, 140 (1962).

    Article  CAS  Google Scholar 

  5. H. Strehlow, Z. Elektrochem., 66, 392 (1962).

    CAS  Google Scholar 

  6. M. Takagi, S. Ono and T. Wasa, Review of Polarography (Japan), 11, 210 (1963).

    CAS  Google Scholar 

  7. M. Becker, Ber. Bunsenges. Phys. Chem., 68, 669 (1964).

    CAS  Google Scholar 

  8. V. Gold, G. Socrates and M.R. Crampton, J. Chem. Soc., 5888 (1964).

    Google Scholar 

  9. V.S. Griffith and G. Socrates, Trans. Faraday Soc., 63, 673 (1967).

    Article  Google Scholar 

  10. G. Öjelund and I. Wadsö, Acta Chem. Scand., 21, 1408 (1967).

    Article  Google Scholar 

  11. Y. Pocker, J.E. Meany, B.J. Nist and C. Zadorojny, J. Phys. Chem., 73, 2879(1969).

    Article  CAS  Google Scholar 

  12. Y. Pocker and J.E. Meany, J. Phys. Chem., 74, 1486 (1970).

    Article  CAS  Google Scholar 

  13. N. Hellstrom and S.O. Almquist, J. Chem. Soc. B, 1396 (1970).

    Google Scholar 

  14. G.A. Gachko, L.N. Kivach, S.A. Maskevich, Yu.M. Ostrovskii, S.G. Podtynchenko, Dokl. Akad. Nauk BSSR, 27, 946 (1983).

    CAS  Google Scholar 

  15. W. Knoche, M.A. Lopez-Quintela and J. Weiffen, Ber. Bunsenges. Phys. Chem., 89, 1047 (1985).

    CAS  Google Scholar 

  16. 2. J. Jen and W. Knoche, Ber. Bunsenges. Phys. Chem., 72, 539 (1969).

    Google Scholar 

  17. K.H. Meyer, Chem. Ber., 45, 2843 (1912).

    Article  Google Scholar 

  18. A. Hantzsch, Chem. Ber., 48, 1407 (1915).

    Article  CAS  Google Scholar 

  19. E. Gelles and R.W. Hay, J. Chem. Soc., 3673 (1958).

    Google Scholar 

  20. B.E.C. Banks, J. Chem. Soc., 5043 (1961).

    Google Scholar 

  21. W.D. Kumler, E. Kun and J.N. Shoolery, J. Org. Chem., 27, 1165 (1962).

    Article  CAS  Google Scholar 

  22. G.W. Kosicki, Canad. J. Chem., 40, 1280 (1962).

    Article  CAS  Google Scholar 

  23. G.W. Kosicki and S.N. Lilpovac, Canad. J. Chem., 42, 403 (1964).

    Article  CAS  Google Scholar 

  24. S.S. Tate, A.K. Grzybowski and S.P. Datta, J. Chem. Soc., 1372 (1964).

    Google Scholar 

  25. C.S. Tsai, Y.T. Lin and E.E. Sharkawi, J. Org. Chem., 37, 85 (1972).

    Article  CAS  Google Scholar 

  26. H.L. Hess and R.E. Reed, Arch. Biochem. Biophys., 153, 226 (1972).

    Article  CAS  Google Scholar 

  27. D.W. Schiering and J.E. Keaton, J. Molec. Struct., 144, 71 (1986).

    Article  CAS  Google Scholar 

  28. C.I. Pogson and R.G. Wolfe, Biochem. Biophys. Res. Commun., 46, 1048 (1972).

    Article  CAS  Google Scholar 

  29. F.C. Kokesh, J. Org. Chem., 41, 3593 (1973).

    Article  Google Scholar 

  30. M. Emly and D. Leussing, J. Am. Chem. Soc., 103, 628 (1981).

    Article  CAS  Google Scholar 

  31. P.Y. Bruice, J. Am. Chem. Soc., 105, 4982 (1983).

    Article  CAS  Google Scholar 

  32. J.P. Segretario, N. Sleszynski, R.E. Partch, P. Zuman and V. Horak, J. Org. Chem., 54, 1986.

    Google Scholar 

  33. For dianioin of oxalacetic acid it has been claimed (Reference 4b) that the relative content of all forms is independent of concentration, but data in Table 3 (Reference 4b) indicate for the content of the hydrated form a significant difference, even when concentration of the acid was changed only from 1.14 M to 1.7 M.

    Google Scholar 

  34. P.Y. Bruice and T.C. Bruice, J. Am. Chem. Soc., 100, 4793 (1978).

    Article  CAS  Google Scholar 

  35. P.Y. Bruice and T.C. Bruice, J. Am. Chem. Soc., 100, 4802 (1978).

    Article  CAS  Google Scholar 

  36. R. Boyd, “Acidity Functions” in “Solvent-Solute Interactions”, Vol. 1 (J.F. Coetzee and C.D. Ritchie, Eds.), M. Dekker, New York, 1969, p. 97–228.

    Google Scholar 

  37. W.J. Bover and P. Zuman, J. Am. Chem. Soc., 95, 2531 (1973).

    Article  CAS  Google Scholar 

  38. T.J.M. Pouw, W.J. Bover and P. Zuman, Advances in Chemistry, 155, 343 (1976).

    Article  CAS  Google Scholar 

  39. J. Kozlowski and P. Zuman, J. Am. Chem. Soc., submitted.

    Google Scholar 

  40. E.M. Arnett, Prog. Phys. Org. Chem. (S.G. Cohen, A. Streitwieser, Jr. and R.W. Taft, Eds.), 1, 223–402 (1963).

    Article  CAS  Google Scholar 

  41. D. Barnes and P. Zuman, J. Electroanal. Chem., 46, 323 (1973).

    Article  CAS  Google Scholar 

  42. P. Zuman, ibid., 75, 523 (1977).

    CAS  Google Scholar 

  43. J. Rusling and P. Zuman, ibid., 143, 283 (1983).

    CAS  Google Scholar 

  44. K. Vesely and R. Brdicka, Collect. Czechoslov. Chem. Commun., 12, 313 (1947).

    CAS  Google Scholar 

  45. R. Bieber and G. Trümpler, Helv. Chim. Acta, 30, 706, 971, 1109, 1286, 1534, 2000 (1947).

    Article  CAS  Google Scholar 

  46. P. Valenta, Collect. Czechoslov. Chem. Commun., 25, 853 (1960).

    CAS  Google Scholar 

  47. J. Volke and P. Valenta, ibid., 25, 580 (1960).

    Google Scholar 

  48. E. Laviron, Bull. Soc. Chim. Fr., 2325 (1961).

    Google Scholar 

  49. J.P. Segretario, J.F. Rusling and P. Zuman, J. Electroanal. Chem., 143, 291 (1983).

    Article  Google Scholar 

  50. J. Kozlowski and P. Zuman, J. Electroanal. Chem., 226, 69 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Kozlowski, J., Zuman, P. (1988). Studies on Acid-Base, Hydration-Dehydration and Keto-Enol Equilibria in Aqueous Solutions of α-Ketoacids by Polarography, Linear Sweep Voltammetry and Spectroscopy. In: Dryhurst, G., Niki, K. (eds) Redox Chemistry and Interfacial Behavior of Biological Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9534-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9534-2_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9536-6

  • Online ISBN: 978-1-4615-9534-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics