Skip to main content

Electrochemical Study of the Mechanism and Kinetics of Oxygen Reduction Mediated by Anthracycline Antibiotics Adsorbed on Electrode Surface

  • Chapter
Redox Chemistry and Interfacial Behavior of Biological Molecules

Abstract

It is well known that anthracycline antibiotics having an anthraquinone group in the molecule are an important class of widely used antitumor antibiotics1. Their clinical efficacy is limited by severe doserelated cardiotoxicity1,2. It has been considered that these undesirable side effects as well as the clinical benefits result from their ability to shuttle electrons from NADPH-cytochrome P-450 reductase to molecular oxygen that is, in turn, transformed into activated oxygen species such as superoxide anion radical, hydroxyl radical, and hydrogen peroxide1–3. The activated oxygen species have been proposed to play a fatal role in DNA scission4 and peroxidation of mitochondrial membranes5. However, the detailed mechanism is not yet fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Arcamone, “Doxorubicin Anticancer Antibiotics”, “Medicinal Chemistry”, Vol. 17, Academic Press, New York (1981); F. Arcamone, Med. Res. Rev., 4, 153 (1984); R.C. Young, R.F. Ozols and C.E. Myers, N. Engl. J. Med., 305, 139 (1981).

    Google Scholar 

  2. M.D. Green, J.L. Speyer and F. Muggia, Eur. J. Cancer Clin. Oncol., 20, 293 (1984); and the references sited therein.

    Article  CAS  Google Scholar 

  3. H. Nohl, W. Jordan and R.J. Youngman, Adv. Free Radical Biology & Medicine, 2, 211 (1986).

    Article  CAS  Google Scholar 

  4. J.H. Peters, G.R. Gordon, D. Kashiwase, J.W. Lown, S.-F. Yen and J.A. Plambeck, Biochem. Pharmacol., 35, 1309 (1986).

    Article  CAS  Google Scholar 

  5. T. Komiyama, T. Kikuchi and Y. Sugiura, Biochem. Pharmacol., 31, 3651 (1982).

    Article  CAS  Google Scholar 

  6. S. Tero-Kubota, Y. Ikegami, K. Sugioka and M. Nakano, Chem. Lett., 1583 (1984).

    Google Scholar 

  7. J.W. Lown, S.-K. Sim, K.C. Majundar and R.Y. Chang, Biochem. Biophys. Res. Commun., 76, 705 (1977); V. Berlin and W.A. Haseltine, J. Biol. Chem., 256, 4747 (1981); and the references cited therein.

    Article  CAS  Google Scholar 

  8. E.G. Mimnaugh, K.A. Kennedy, M.A. Trush and B.K. Sinha, Cancer Res., 45, 3296 (1985).

    CAS  Google Scholar 

  9. E.G. Mimnaugh, M.A. Trush, M. Bhatnagar and T.E. Gram, Biochem. Pharmacol., 34, 847 (1985); and the references cited therein.

    Article  CAS  Google Scholar 

  10. R.W. Murray, in: “Electroanalytical Chemistry”, A.J. Bard, Ed., Vol. 13, Marcel Dekker, New York (1984), pp. 191–368; R.W. Murray, A.G. Ewing and R.A. Durst, Anal. Chem., 59, 379A (1987); L.R. Faulkner, Chem. Eng. News, 62, 28 (1984).

    Google Scholar 

  11. E. Yeager, J. Mol. Catal., 38, 5 (1986).

    Article  CAS  Google Scholar 

  12. P.A. Forshey, T. Kuwana, N. Kobayashi and T. Osa, Am. Chem. Soc. Adv. Chem., 201, 601 (1982).

    CAS  Google Scholar 

  13. R. Durand and F.C. Anson, J. Electroanal. Chem., 134, 273 (1982).

    Article  CAS  Google Scholar 

  14. R. Durand, C.S. Bencosme, J.P. Collman and F.C. Anson, J. Am. Chem. Soc., 105, 2710 (1983).

    Article  CAS  Google Scholar 

  15. P. Martigny and F.C. Anson, J. Electroanal. Chem., 139, 383 (1982).

    Article  CAS  Google Scholar 

  16. N. Oyama, N. Oki, H. Ohno, Y. Ohnuki, H. Matsuda and E. Tsuchida, J. Phys. Chem., 87, 3642 (1983).

    Article  CAS  Google Scholar 

  17. K. Itaya, N. Shoji and I. Uchida, J. Am. Chem. Soc., 106, 3423 (1984); and the references cited therein.

    Article  CAS  Google Scholar 

  18. G.S. Calabrese, R.M. Buchanan and M.S. Wrighton, J. Am. Chem. Soc., 104, 5786 (1982).

    Article  CAS  Google Scholar 

  19. M.-C. Pham and J.-E. Dubois, J. Electroanal. Chem., 199, 153 (1986).

    Article  Google Scholar 

  20. C. Degrand, J. Electroanal. Chem., 169, 259 (1984).

    Article  CAS  Google Scholar 

  21. T. Nagaoka, T. Sakai, K. Ogura and T. Yoshino, Anal. Chem., 58, 1953 (1986).

    Article  CAS  Google Scholar 

  22. C.P. Andrieux, J.M. Dumas-Bouchiat and J.A. Saveant, J. Electroanal. Chem., 131, 1 (1982); idem., ibid., 169, 9 (1984).

    Article  CAS  Google Scholar 

  23. K. Kano, T. Konse, N. Nishimura and T. Kubota, Bull. Chem. Soc. Jpn., 57, 2382 (1984).

    Google Scholar 

  24. K. Kano, T. Konse and T. Kubota, ibid., 58, 424 (1985).

    CAS  Google Scholar 

  25. idem, ibid., 58, 1879 (1985).

    Google Scholar 

  26. T. Konse, K. Kano and T. Kubota, ibid., 59, 265 (1986).

    CAS  Google Scholar 

  27. T. Konse, K. Kano, R. Kano and T. Kubota, ibid., 59, 3299 (1986).

    CAS  Google Scholar 

  28. K. Kano, T. Konse, K. Hasegawa, B. Uno and T. Kubota, J. Electroanal. Chem., 225, 187 (1987).

    Article  CAS  Google Scholar 

  29. T. Konse, K. Kano and T. Kubota, J. Electroanal. Chem., in press; Paper presented at the 32nd Annual Meeting on Polarography and Electroanalytical Chemistry in Tokyo, Nov. 12–14, 1986: Abstract, Rev. Polarogr. (Kyoto), 32, 48 (1986).

    Google Scholar 

  30. B. Uno, K. Kano, T. Konse, T. Kubota, S. Matsuzaki and M. Kuboyama, Chem. Pharm. Bull., 33, 5155 (1985).

    Article  CAS  Google Scholar 

  31. S.W. Feldberg, in: “Electroanalytical Chemistry”, A.J. Bard, Ed., Vol. 3, Marcel Dekker, New York (1969), pp. 199–296.

    Google Scholar 

  32. In our case, a dimensionless diffusion coefficient (DNORM = D*ΔTT/(ARR)2) was taken as 0.45 (ΔTT and ΔRR are respectively the time unit and the distance unit). In CV-curve calculations, the potential interval (ΔPOT) was 1 mV and then ΔTT = |Δ POT/v|. In RDV-curve calculations, a dimensionless parameter VZERO (= vo*ΔTT*ΔRR) was taken as 0.001 (vo = 0.51(ω3/ν)1/2) and then ΔTT = (VZERO/vo)2/3(DNORM/D)1/3. Other operations were done in line with the literature14.

    Google Scholar 

  33. T. Kakutani and M. Senda, Bull. Chem. Soc. Jpn., 53, 1942 (1980).

    Article  CAS  Google Scholar 

  34. E. Laviron, in: “Electroanalytical Chemistry”, A.J. Bard, Ed., Vol. 12, Marcel Dekker, New York (1982), pp. 53–157.

    Google Scholar 

  35. A.J. Bard and L.R. Faulkner, “Electrochemical Methods — Fundamentals and Applications”, Wiley, New York (1980), pp. 283–298.

    Google Scholar 

  36. D.T. Sawyer and J.S. Valentine, Acc. Chem. Res., 14, 393 (1981);

    Article  CAS  Google Scholar 

  37. J.M. McCord, J.D. Crapo and I. Fridovich, in: “Superoxide and Superoxide Dismutases”, A.M. Michelson, J.M. McCord and I. Fridovich, Ed., Academic Press, London, New York (1977), pp. 11–17.

    Google Scholar 

  38. J.A. Fee and L.S. Valentine, in Reference 18b, pp. 19–60.

    Google Scholar 

  39. The curve-fitting analysis (see the latter section of text) of the CV curves reveals that SOD accelerates the disproportionation reaction rate; kc = 4.65 X 1010 cm3 mol-1 S-1, kdlsp = 7.04 X 104 dm3 mol-1 S-1 at Γt = 7.66 × 10-11 mol cm-2 in the absence of SOD, but kc = 3.67 × 1010 cm3 mol-1 S-1, kdlsp = 5.03 × 105 dm3 mol-1 S-1 at Γt = 6.84 × 10-11 mol cm-2 after the addition of SOD.

    Google Scholar 

  40. In simplified model, the computation time of the CV-curve is greatly reduced and the analytical equation of the RDV curve can be obtained12. Furthermore, a Koutecky-1evich-type linear relation between ip-1 and w1/2 is expected, which has been justified experimentally12.

    Google Scholar 

  41. The kc value decreases with Γt owing to the attractive interaction between adsorbed molecules12. In order to avoid the complexity, the pH dependence kc was examined at a constant Γt as possible (5.7 ± 1.2 × 10-11 mol cm2).

    Google Scholar 

  42. T. Ikeda, C.R. Leidner and R.W. Murray, J. Am. Chem. Soc., 105, 7422 (1981); idem., J. Electroanal. Chem., 138, 343 (1982).

    Article  Google Scholar 

  43. R.J. Klingler and J.K. Kochi, J. Am. Chem. Soc., 102, 4790 (1980).

    Article  CAS  Google Scholar 

  44. Γs,b, E°’ and E°’1 are given by: Γs,b = ΓsKa,s/(Ka,s + [H]), \({\text{E}}^ \circ = \bar {\text{E}}^ \circ + \left( {{{\text{RT}} \mathord{\left/ {\vphantom {{\text{RT}} {\text{F}}}} \right.} {\text{F}}}} \right)\ln \left( {\left[ {\text{H}} \right] + {\text{K}}_{\text{a,so}} } \right),{\text{and E}}_1^ \circ = \bar {\text{E}}_1 ^ \circ, + {{\left( {{{\text{RT}} \mathord{\left/ {\vphantom {{\text{RT}} {\text{F}}}} \right.} {\text{F}}}} \right)\ln \left( {\left[ {\text{H}} \right]^2 + \left[ {\text{H}} \right]{\text{K}}_{\text{a,s}} } \right)} \mathord{\left/ {\vphantom {{\left( {{{\text{RT}} \mathord{\left/ {\vphantom {{\text{RT}} {\text{F}}}} \right.} {\text{F}}}} \right)\ln \left( {\left[ {\text{H}} \right]^2 + \left[ {\text{H}} \right]{\text{K}}_{\text{a,s}} } \right)} {\left( {\left[ {\text{H}} \right] + {\text{K}}_{\text{a,o}} } \right)}}} \right.} {\left( {\left[ \text{H} \right] + {\text{K}}_{\text{a,o}} } \right)}}.\) The \(\bar{\text{E}}_1^ \circ\) is reported as -0.29 V18a and \(\bar{\text{E}}_1^ \circ\) is estimated as -0.234 V under our experimental conditions.

    Google Scholar 

  45. The value of β is somewhat smaller than that predicted from the simplified Marcus relationship25 (0.5). From the log kc° thus obtained, \({\text{k}}_{\text{c}}^{\text{int}}\) can be estimated to be 5.8 × 1010 cm3 mol-1 S-1 based on Equation (15).

    Google Scholar 

  46. R.A. Marcus, Annu. Revs. Phys. Chem., 15, 155 (1964).

    Article  CAS  Google Scholar 

  47. D.L. Kleyer and T.H. Koch, J. Am. Chem. Soc., 106, 2380 (1984); J. Fischer, B.R.J. Abdella and K.E. McLane, Biochemistry, 24, 3562 (1985); A. Anne and J. Moiroux, Nouv. J. Chim., 9, 83 (1985).

    Article  CAS  Google Scholar 

  48. J. Fischer, B.R.J. Abdella and K.E. McLane, Biochemistry, 24, 3562 (1985).

    Article  Google Scholar 

  49. A. Anne and J. Moiroux, Nouv. J. Chim., 9, 83 (1985).

    CAS  Google Scholar 

  50. The values of pKa,s, pKa,o, and E°’1 of ADM adsorbed on a mercury electrode have been reported as 6.93, 8.53 and -0.200 V, respectively. Putting these values in Equations (14)-(15) gives the kc value of ADM at pH 7 as 3.86 × 1010 cm3 mol-1 S-1, by using the values of \({\text{k}}_{\text{c}}^{\text{int}}\) and β estimated for 7-DADMN (see Reference 24 and text). This calculated value coincides with the found value.

    Google Scholar 

  51. Theoretically, however, non-spontaneous catalytic reactions with (E° - E°’1) < 0 is anticipated if both rate constants of the electron self-exchange reactions of the catalyst and the substrate are sufficiently large22,25.

    Google Scholar 

  52. S. Neidle, in: “Topics in Antibiotic Chemistry”, P.G. Sammes, Ed., Vol. 2, Wiley, New York (1978), pp. 240–278.

    Google Scholar 

  53. T.G. Burke and T.R. Tritton, Biochemistry, 24, 1768 (1985).

    Article  CAS  Google Scholar 

  54. D. Cheneval, M. Muller, R. Toni, S. Ruetz and E. Carafoli, J. Biol. Chem., 260, 13003 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Kano, K., Konse, T., Uno, B., Kubota, T. (1988). Electrochemical Study of the Mechanism and Kinetics of Oxygen Reduction Mediated by Anthracycline Antibiotics Adsorbed on Electrode Surface. In: Dryhurst, G., Niki, K. (eds) Redox Chemistry and Interfacial Behavior of Biological Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9534-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9534-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9536-6

  • Online ISBN: 978-1-4615-9534-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics