Skip to main content

Follicle Regulatory Protein: An Intraovarian Regulator of Follicular Response to Gonadotropin Stimulation

  • Chapter
The Primate Ovary

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

  • 69 Accesses

Abstract

Follicular fluids from various species contain inhibitor (s) of aromatase activity. Fractions of bovine follicular fluid inhibited the induction of aromatase activity in granulosa cells in proportion to their concentration in the culture medium (1). Furthermore, equine follicular fluid was shown to inhibit porcine granulosal production of estradiol and progesterone (2,3), and steroid-free, bovine follicular fluid inhibited FSH-induced secretion of estrogen by ovine granulosa cells collected from follicles more than 3 mm in diameter (4). Guthrie found that charcoalextracted, porcine follicular fluid blocked the recruitment of mediumsized follicles into preovulatory development after the administration of exogenous FSH (5). When administered to intact ewes, ovine follicular fluid, with or without the addition of pregnant mare serum (PMS), reduced the number of follicles more than 4 mm in diameter as well as the relative proportion of follicles less than 2 mm (6). These studies in vivo were extended by observations in vitro that treatment with ovine follicular fluid inhibited aromatase activity as well as mitotic activity in granulosa cells. It was suggested that ovine follicular cells produce an endogenous inhibitor of granulosal aromatase which they secrete into the follicular fluid. Fractions of human follicular fluid which bound to dye Matrix gel Orange A inhibited human menopausal gonadotropin (hMG)-stimulated secretion of estradiol by rats in vivo as well as production of estrogen by porcine granulosa cells in vitro (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hillier SG, Van Hall EV, Van Den Boogaard AJM, et al. Activation and modulation of the granulosa cell aromatase system: experimental studies with rat and human ovaries. In: McNatty KP, Schoemaker J, eds. Follicular maturation and ovulation. Amsterdam: Excerpta Medica, 1982:51–70.

    Google Scholar 

  2. Channing CP, Anderson LD, Hoover DJ, et al. Comparison of follicular maturation. Recent Prog Horm Res 1987; 38:331–404.

    Google Scholar 

  3. Tonetta SA, DeVinna RS, Fay J, et al. Comparison of follicular regulatory protein activity in porcine, equine and bovine follicular fluid [Abstract]. Ovarian Workshop, Ithaca, New York, 1986.

    Google Scholar 

  4. McNatty KP, Gibb M, Bodson C, et al. Preovulatory follicular development in sheep treated with PMSG and/or prostaglandin. J Reprod Fertil 1982; 65:111–23.

    Article  PubMed  CAS  Google Scholar 

  5. Guthrie HD, Bold DJ, Kiracafe GH, et al. Effects of charcoalextracted porcine follicular fluid and porcine FSH on recruitment of medium follicles on gilts. Biol Reprod 1986; 34:71a.

    Article  Google Scholar 

  6. Cahill LP, Driancourt MA, Chamley WA, et al. Role of intrafollicular regulators and FSH in growth and development of large antral follicles in sheep. J Reprod Fertil 1985; 75:1–9.

    Article  Google Scholar 

  7. Chari S, Daume E, Sturm G, et al. Regulators of steroid secretion and inhibin activity in human ovarian follicular fluid. Mol Cell Endocrinol 1985; 41:137–45.

    Article  PubMed  CAS  Google Scholar 

  8. Saito H, Hiroi M. Correlation between the follicular gonadotropin inhibitor and the maturity of the ovum-corona-cumulus complex. Fertil Steril 1986; 46:66–72.

    PubMed  CAS  Google Scholar 

  9. Adashi EY, Resnick CE, D’Ercole AJ, et al. Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function. Endocr Rev 1985; 6:400–20.

    Article  PubMed  CAS  Google Scholar 

  10. Adashi EY, Resnick CE. Antagonistic interactions of transforming growth factors in the regulation of granulosa cell differentiation. Endocrinology 1986; 119:1879–81.

    Article  PubMed  CAS  Google Scholar 

  11. Holmberg EA, Campeau JD, Ono T, et al. Comparison of isoelectric focusing in sephadex vs immobiline flat beds for the preparative purification of follicular fluid. Prep Biochem 1986; 16:275–95.

    Article  PubMed  CAS  Google Scholar 

  12. Ono T, Campeau JD, Holmberg EA, et al. Biochemical and physiological characterization of follicle regulatory protein: a paracrine regulator of follieulogenesis. Am J Obstet Gynecol 1986; 154:709–16.

    PubMed  CAS  Google Scholar 

  13. Isutsumi I, Fujimori K, Ono T, et al. Inhibition of spermatogenesis in the rat with follicle regulatory protein. Biol Reprod 1987; 36:451–61.

    Article  Google Scholar 

  14. Kling OR, Roche PC, Campeau JD, et al. Identification of protein (s) in porcine follicular fluid which suppress follicular response to gonadotropins. Biol Reprod 1984; 30:564–72.

    Article  PubMed  CAS  Google Scholar 

  15. McNatty KP, Hunter WM, McNeilly AS, et al. Changes in the concentration of pituitary and steroid hormones in the follicular fluid of human Graafian follicles throughout the menstrual cycle. J Endocrinol 1975; 64:555–71.

    Article  PubMed  CAS  Google Scholar 

  16. McNatty KP, Makris A, DeGrazie C, et al. The production of progesterone, androgens and estrogens by granulosa cells, thecal tissue and stromal tissue from human ovaries in vitro. J Clin Endocrinol Metab 1979; 49:851–60.

    Article  PubMed  CAS  Google Scholar 

  17. McNatty KP, Moore, Smith D, et al. The microenvironment of the human follicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells and the status of the oocyte in vivo and in vitro. J Clin Endocrinol Metab 1984; 49:851–60.

    Article  Google Scholar 

  18. Battin DA, diZerega GS. Effect of follicular fluid protein (s) on gonadotropin modulated secretion of progesterone in porcine granulosa cells. Am J Obstet Gynecol 1985; 60:1116–9.

    CAS  Google Scholar 

  19. Schreiber JR, diZerega GS. Porcine follicular fluid protein (s) inhibit rat ovary granulosa cell steroidogenesis. Am J Obstet Gynecol 1986; 155:1281–8.

    PubMed  CAS  Google Scholar 

  20. Battin DA, diZerega GS. Effect of hMG and follicle regulatory protein on 3β-o1-dehydrogenase activity in human granulosa cells. J Clin Endocrinol Metab 1985; 153:432–8.

    CAS  Google Scholar 

  21. Chicz R, Campeau JD, diZerega GS. Follicular regulatory protein noncompetively inhibits microsomal aromatase activity. In: Ryan RJ, Toaf D, eds. Proceedings of the 5th Ovarian Workshop, 1985:351–6.

    Google Scholar 

  22. Leung PCK, Armstrong DT. Interactions of steroids and gonadotropins in the control of steroidogenesis in the ovarian follicle. Annu Rev Physiol 1980; 42:71–95.

    Article  PubMed  CAS  Google Scholar 

  23. Leung PCK, Goff AK, Armstrong DT. Stimulatory effect of androgen administration in vivo on ovarian responsiveness to gonadotropins. Endocrinology 1979; 1204:1119–23.

    Article  Google Scholar 

  24. Lischinsky A, Armstrong DT. Granulosa cell stimulation of thecal androgen synthesis. Can J Pharmacol 1983; 61:472–7.

    Article  CAS  Google Scholar 

  25. Veldhuis JD, Klase PA, Sandow BA, et al. Progesterone secretion by highly differentiated human granulosa cells isolated from preovulatory Graafian follicles induced by exogenous gonadotropins and human chorionic gonadotropin. J Clin Endocrinol Metab 1983; 57:87–93.

    Article  PubMed  CAS  Google Scholar 

  26. diZerega GS, Campeau JD, Ujita EL, et al. Possible role for a follicular fluid protein in the intraovarian regulation of folliculogenesis. Sem Reprod Endocrinol 1983; 11:309–22.

    Article  Google Scholar 

  27. diZerega GS, Marrs RP, Campeau JD, et al. Human granulosa cell secretion of protein (s) which suppress follicular response to gonadotropins. J Clin Endocrinol Metab 1983; 56:147–55.

    Article  PubMed  CAS  Google Scholar 

  28. McNatty KP, Baird DT. Relationship between follicle-stimulating hormone, androstenedione and oestradiol in human follicular fluid. J Endocrinol 1981; 76:527–31.

    Article  Google Scholar 

  29. diZerega GS, Turner CK, Stouffer RL, et al. Suppression of FSH dependent folliculogenesis during the primate ovarian cycle. J Clin Endocrinol Metab 1981; 52:451–6.

    Article  PubMed  CAS  Google Scholar 

  30. Chikazawa K, Araki S, Tamada I. Morphological and endocrinological studies on follicular development during the human menstrual cycle. J Clin Endocrinol Metab 1986; 62:305–13.

    Article  PubMed  CAS  Google Scholar 

  31. Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Human Reprod 1986; 1:81–7.

    CAS  Google Scholar 

  32. Baird DT, Backstrom T, McNeilly AS, et al. Effect of enucleation of the corpus luteum at different stages of the luteal phase of the human menstrual cycle on subsequent follicular development. J Reprod Fertil 1984; 70:615–24.

    Article  PubMed  CAS  Google Scholar 

  33. diZerega GS, Hodgen GD. Initiation of asymmetrical ovarian estradiol secretion in the primate ovarian cycle after lutectomy. Endocrinology 1981; 108:1233–6.

    Article  PubMed  CAS  Google Scholar 

  34. diZerega GS, Ross GT. Regulation of follicle growth. In: Taymor MC, Nelson J, eds. Progress in gynecology, vol 7. New York: Grune and Stratton, 1983:21–42.

    Google Scholar 

  35. Goodman AL, Hodgen GD. Systemic versus intraovarian progesterone replacement after luteectomy in rhesus monkeys: differential patterns of gonadotropins and follicle growth. J Clin Endocrinol Metab 1977; 45:837–43.

    Article  PubMed  CAS  Google Scholar 

  36. Goodman AL, Nixon WE, Johnson DL, et al. Regulation of folliculogenesis in the rhesus monkey: selection of the dominant follicle. Endocrinology 1977; 100:155–63.

    Article  PubMed  CAS  Google Scholar 

  37. Nilsson L, Wikland M, Hamberger L. Recruitment of an ovulatory follicle in the human following follicle-ectomy and luteectomy. Fertil Steril 1984; 37:30–4.

    Google Scholar 

  38. Bogavich K, Richards JS. Androgen biosynthesis in developing ovarian follicles: evidence that luteinizing hormone regulates thecal 17α-hydroxylase and C17, 20-lyase activities. Endocrinology 1982; 111:1201–8.

    Article  Google Scholar 

  39. Sano Y, Suzuki K, Arai K, et al. Changes in enzyme activities on human ovaries during the menstrual cycle. J Clin Endocrinol Metab 1981; 52:994–8.

    Article  PubMed  CAS  Google Scholar 

  40. Tonetta SA, DeVinna RS, diZerega GS. Modulation of porcine thecal cell aromatase activity by human chorionic gonadotropin, progesterone, estradiol-17β and dihydrotestosterone. Biol Reprod 1986; 35:785–91.

    Article  PubMed  CAS  Google Scholar 

  41. Tsang BK, Ainsworth L, Downey BR, et al. Differential production of steroids by dispersed granulosa and theca interna cells from developing preovulatory follicles of pigs. J Reprod Fertil 1985; 74:459–71.

    Article  PubMed  CAS  Google Scholar 

  42. Tonetta SA, DeVinna RS, diZerega GS. Thecal cell 3β-hydroxysteroid dehydrogenase activity: modulation by hCG, progesterone, estradiol, and DHT. J Steroid Biochem (in press).

    Google Scholar 

  43. Liu Y-X, Hsueh AJ. Synergism between granulosa and theca-interstitial cells in estrogen biosynthesis by gonadotropin-treated rat ovaries: studies on the two-cell, two-gonadotropin hypothesis using steroid antisera. Biol Reprod 1986; 35:27–36.

    Article  PubMed  CAS  Google Scholar 

  44. Fortune JE. Bovine theca and granulosa cells interact to promote androgen production. Biol Reprod 1986; 35:292–9.

    Article  PubMed  CAS  Google Scholar 

  45. Choudary J, Gier H, Marion G. Cyclic changes in bovine vesicular follicles. J Anim Sci 1968; 27:468–71.

    PubMed  CAS  Google Scholar 

  46. Driancourt MA, Fry RC, Clark IJ, Cahill LP. Follicular growth and regression during the 8 days after hypophysectomy in sheep. J Reprod Fertil 1987; 79:635–41.

    Article  CAS  Google Scholar 

  47. McNatty KP. Ovarian follicular development from the onset of luteal regression in humans and sheep. In: Rolland R, VanHall EV, Hillier SG, McNatty KP, Schoemaker J, eds. Follicular maturation and ovulation. Proceedings of the IVth Reinier De Graff Symposium. Amsterdam: Elsiever, 1982:1–18.

    Google Scholar 

  48. Hodgen GD. The dominant ovarian follicle. Fertil Steril 1982; 38:281–300.

    PubMed  CAS  Google Scholar 

  49. McNatty KP, Hillier SG, van den Boogaard AMJ, et al. Follicular development during the luteal phase of the human menstrual cycle. J Clin Endocrinol Metab 1983; 56:1022–31.

    Article  PubMed  CAS  Google Scholar 

  50. Lew NW, Katt EL, Rogers KE, et al. Alteration of follicle regulatory protein levels in human reproductive disorders and anovulation. Obstet Gynecol 1987; 70:157–62.

    PubMed  CAS  Google Scholar 

  51. Montz FJ, Ujita EL, Campeau JD, et al. Inhibition of luteinizing hormone/human chorionic gonadotropin binding to porcine granulosa cells by a follicular fluid protein. Am J Obstet Gynecol 1984; 148:436–41.

    PubMed  CAS  Google Scholar 

  52. Ujita EL, Campeau JD, diZerega GS. Inhibition of porcine granulosa cell adenylate cyclase activity by an ovarian protein. Exp Clin Endocrinol 1987 (in press).

    Google Scholar 

  53. diZerega GS, Hodgen GD. The primate ovarian cycle. Suppression of human menopausal gonadotropin-induced follicular growth in the presence of the dominant follicle. J Clin Endocrinol Metab 1980; 50:819–25.

    Article  PubMed  CAS  Google Scholar 

  54. Lindner HR, Amsterdam A, Salomon Y, et al. Intraovarian factors in ovulation: determinants of follicular response to gonadotropins. J Reprod Fertil 1977; 51:215–35.

    Article  PubMed  CAS  Google Scholar 

  55. Baird DT. Factors regulating the growth of the preovulatory follicle in the sheep and human. J Reprod Fertil 1983; 69:343–53.

    Article  PubMed  CAS  Google Scholar 

  56. Erickson GF, Hsueh AJW. Stimulation of aromatase activity by follicle stimulating hormone in rat granulosa cells in vivo and in vitro. Endocrinology 1978; 102:1275–82.

    Article  Google Scholar 

  57. Goodman AL, Hodgen GD. The ovarian triad. Recent Prog Horm Res 1983; 39:1–73.

    PubMed  CAS  Google Scholar 

  58. Goodman AL, Hodgen GD. Between-ovary interaction in the regulation of follicle growth, corpus luteum function and gonadotropin secretion in the primate ovarian cycle II. Effects of luteectomy and hemiovariectomy during the luteal phase in cynomolgus monkeys. Endocrinology 1979; 104:1310–8.

    Article  PubMed  CAS  Google Scholar 

  59. Hillier SG. Sex steroid metabolism and follicular development in the ovary. Oxf Rev Reprod Biol 1985; 7:168–222.

    PubMed  CAS  Google Scholar 

  60. Hsueh AJW, Adashi EY, Jones PBC, et al. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev 1984; 5:76–127.

    Article  PubMed  CAS  Google Scholar 

  61. Veldhuis JD, Klase PA, Strauss JF, et al. The role of estradiol as a biological amplifier of the actions of follicle-stimulating hormone: in vitro studies in swine granulosa cells. Endocrinology 1982; 111:144–51.

    Article  PubMed  CAS  Google Scholar 

  62. Adashi EY, Hsueh ASW. Estrogens augment the stimulation of ovarian aromatase activity by follicle-stimulating hormone in cultured rat granulosa cells. J Biol Chem 1982; 257:6077–83.

    PubMed  CAS  Google Scholar 

  63. Moor RM, Hay MF, Dott HM, et al. Macroscopic identification and steroidogenic function of atretic follicles in sheep. J Endocrinol 1978; 77:306.

    Article  Google Scholar 

  64. Carson RS, Findlay JK, Clarke IJ, et al. Estradiol, testosterone and androstenedione in ovine follicular fluid during growth and atresia of ovarian follicles. Biol Reprod 1981; 24:105–12.

    Article  PubMed  CAS  Google Scholar 

  65. Tsonis CG, Carson RG, Findlay JK. Relationships between aromatase activity, follicular fluid oestradio 1-17β and testosterone concentrations, and diameter and atresia of individual ovine follicles. J Reprod Fertil 1984; 72:153–63.

    Article  PubMed  CAS  Google Scholar 

  66. diZerega GS, Tonetta SA, Westhof G. Role of follicle regulatory protein in follicle selection. In: Hazeltine F, First N, eds. Molecular control of meiosis. New York: Alan Liss Publications, 1987 (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Westhof, G. et al. (1987). Follicle Regulatory Protein: An Intraovarian Regulator of Follicular Response to Gonadotropin Stimulation. In: Stouffer, R.L. (eds) The Primate Ovary. Serono Symposia, USA. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9513-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9513-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9515-1

  • Online ISBN: 978-1-4615-9513-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics