Skip to main content

The Architecture of Neural Centres and Understanding Neural Organization

  • Chapter
Advances in Physiological Research

Abstract

With the technical means available today it is possible to define and describe any neurone of the nervous system in exact quantitative terms (numerical: for numbers of various types of synapses received or given, distribution [spatial groups], etc.; geometrical: for size, shape, volume, orientation of both dendritic and axonal arborization; topological [edges, apexes]). This revolution in neuroanatomical techniques began with the development of new antero- and retrograde tracing methods (uptake and transport, both by nerve cells and by terminal arborizations of radiolabeled amino acids [occasionally other metabolites and/or mediators], of fluorescent dyes, enzymes — e.g. horseradish peroxidase [HRP] — cobalt compounds, etc). The next step was the combination of various classical and more recent histological procedures, like the Golgi precipitation, labeling with horseradish peroxidase, and by anterograde secondary axonal degeneration, performed simultaneously on the same neural structures and making possible the recovery under the electron microscope (in ultrathin section series) of any specific detail (especially of a given synapse) previously identified in the light microscope. Whole networks of mutually coupled neurones could be thus defined with hitherto unexpected clarity (Somogyi, Hodgson and Smith, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow, H.B. (1981) Critical limiting factors in the design of the eye and visual cortex, Proc Roy. Soc. B: 212, 1–34

    Article  CAS  Google Scholar 

  • Barlow, H.B. (1985a) Cerebral cortex as model builder, In: Models of the visual cortex Rose, D. and Dobson, V.G., eds., Wiley: New York, pp 37–46

    Google Scholar 

  • Barlow, H.B. (1985b) The role of single neurones in the psychology of perception, Quart, exp. Psychol. 37A, 121–145

    Article  CAS  Google Scholar 

  • Changeux, J.P. and Danchin, A. (1976) Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks, Nature 264, 705–712

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G.M. (1978) Group selection and phasic signaling: A theory of higher brain function. In: The Mindful Brain Edelman, G.M. and Mountcastle, V.B., eds., MIT Press: Cambridge, pp 51–100

    Google Scholar 

  • Edelman, G.M. (1984) Modulation of cell adhesion during induction, histogenesis, and perinatal development of the nervous system, Ann. Rev. Neurosci. 7, 339–377

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G.M. and Finkel, L.H. (1982) Neuronal group selection in the cerebral cortex. 1st Symposium of the Neuroscience Institute, La Jolla, 3–8 October

    Google Scholar 

  • Érdi, P. and Barna, G. (1984) Self-organizing mechanism for the formation of ordered neural mappings. Biol. Cybernetics 51, 93–101

    Article  Google Scholar 

  • Érdi, P. and Szentágothai, J. (1985) Neural connectivities between determinism and randomness. In: Dynamics of macrosystems. Aubin, J.P., Saari, D. and Sigmund, K., eds., Lect. Notes in Econ. and Math. Systems 257, 21–29, Springer: Berlin

    Google Scholar 

  • Freeman, W.J. (1983) The physiological basis of mental images. Biol. Psychiatry 18, 1107–1125

    PubMed  CAS  Google Scholar 

  • Freeman, W.J. and Skarda, C. (1985) Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res. Rev. 10, 147–175

    Article  Google Scholar 

  • Gabbott, P.L.A. and Somogyi, P. (1986) Quantitative distribution of GABA-immunoreactive neurones in the visual cortex (area 17) of the cat, Exp. Brain Res. 61, 323–431

    PubMed  CAS  Google Scholar 

  • Goldman, P. and Nauta, W.J.H. (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic and motor cortex of the developing Rhesus monkey, Brain Res. 122, 393–413

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P.S. (1984) Modular organization of prefrontal cortex, Trends in Neurosci. 7, 419–424

    Article  Google Scholar 

  • Goldman-Rakic, P.S. and Schwartz, M.L. (1982) Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates, Science 216, 755–757

    Article  PubMed  CAS  Google Scholar 

  • Grossberg, S. (1982) Associative and competitive principle of learning and development: The temporal unfolding and stability of STM and LTM patterns. In: Competition and Cooperation in Neural Nets Amari, S.I. and Arbib, M.A., eds., Springer: Berlin, pp 295–341

    Google Scholar 

  • Haken, H. (1978) Synergetics. An introduction. 2nd edition. Springer: Berlin

    Google Scholar 

  • Heidmann, A., Heidmann, T. and Changeux, J.P. (1984) Stabilization selective de représentation neuronales par resonance entre “préreprésentations” spontanées du réseau cérébral et “percepts” evoqués par interaction avec le monde extérieur, C.R. Acad. Sci. Paris 299, 839–844

    PubMed  CAS  Google Scholar 

  • Hirsch, H.V.B. and Spinelli, D.N. (1979) Visual experience modifies distribution of horizontally and vertically oriented receptor fields in cats, Science 168, 869–871

    Article  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens, J. Physiol. (Lond.) 206, 419–436

    CAS  Google Scholar 

  • Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–58

    Article  PubMed  CAS  Google Scholar 

  • Horsthemke, W. and Lefever, R. (1984) Noise-induced Transitions: Theory and Applications in Physics, Chemistry and Biology. Springer: Berlin, 318 p

    Google Scholar 

  • Kisvárday, Z.F., Martin, K.A.C., Whitteridge, D. and Somogyi, P. (1985) Synaptic connections of intracellularly filled clutch cells: a type of small basket cell in the visual cortex of the cat, J. Comp. Neurol. 241, 11–137

    Article  Google Scholar 

  • Kohonen, T. (1982) Self-organized formation of generalized topological maps of observations in a physical system. Biol. Cyber. 43, 59–69

    Article  Google Scholar 

  • Luhmann, H.J., Martinez-Millan, L. and Singer, W. (1986) Development of horizontal intrinsic connections in cat striate cortex Exp. Brain Res. 63, 443–448

    Article  PubMed  CAS  Google Scholar 

  • Martin, K.A., Somogyi, P. and Whitteridge, D. (1983) Physiological and morphological properties of identified basket cells in the cat’s visual cortex Exp. Brain Res. 50, 193–200

    Article  PubMed  CAS  Google Scholar 

  • Martin, K.A.C. and Whitteridge, D. (1984) Form, functions, and intracortical projections of spiny neurones in the cat’s visual cortex, J. Physiol. (Lond.) 353, 463–504

    CAS  Google Scholar 

  • Mountcastle, V.B. (1978) An organizing principle of cerebral functions: The unit module and the distributed system. In: The Mindful Brain. Edelman, G.M. and Mountcastle, V.B., eds., M.I.T. Press: Cambridge, pp 7–50

    Google Scholar 

  • Nicolis, G. and Prigogine, I. (1977) Self-organization in non-equilibrium systems. Wiley: New York

    Google Scholar 

  • Pellionisz, A. and Llinás, R. (1979) Brain modeling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive co-ordination. Neuroscience 4, 323–348

    Article  PubMed  CAS  Google Scholar 

  • Pellionisz, A. and Llinás, R. (1985) Cerebellar function and the adaptive feature of the central nervous system. In: Adaptive Mechanisms in Gaze Control, eds. A. Berthoz and G. Melvill-Jones, eds., Elsevier: Amsterdam, pp 223–232

    Google Scholar 

  • Pettigrew, J.D. (1974) The effect of visual experience on the development of stimulus specificity by kitten cortical neurones, J. Physiol. (Lond.) 237, 49–74

    CAS  Google Scholar 

  • Rakic, P. (1984a) Organizing principles for development of primate cerebral cortex, In: Organizing Principles of Neural Development, Sharma, S.C. ed. Plenum: New York, pp 21–48

    Google Scholar 

  • Rakic, P. (1984b) Emergence of neuronal and glial cell lineages in primate brain, In: Cellular and Molecular Biology of Neuronal Development, Black, I.B., ed. Plenum: New York, pp 29–50

    Chapter  Google Scholar 

  • Rockel, A.J., Hiorns, R.W. and Powell, T.P.S. (1980) The basic uniformity in structure of the neocortex. Brain 103, 221–244

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Hodgson, A.J. and Smith, A.D. (1979) An approach to tracing neurone networks in the cerebral cortex and basal ganglia. Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material Neuroscience 4, 1805–1852

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Kisvárday, Z.F., Martin, K.A.C. and Whitteridge, D. (1983) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10, 261–294

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P. and Soltész, I. (1986) Immunogold demonstration of GABA in synaptic terminals of intracellularly recorded, horseradish peroxidase-filled basket cells and clutch cells in the cat’s visual cortex, Neuroscience (in the press)

    Google Scholar 

  • Stryker, M.P. (1982) Role of visual afferent activity in the development of ocular dominance columns. Neurosci. Res. Progr. Bull. 20, 540–549

    CAS  Google Scholar 

  • Szentágothai, J. (1978) The neurone network of the cerebral cortex. A functional interpretation. The Ferrier Lecture 1977. Proc. Roy. Soc. B: 201, 219–248

    Article  Google Scholar 

  • Szentágothai, J. (1983) The “modular” architectonic principle of neural centres. Rev. Physiol. Biochem. Pharmacol. Vol. 98 Springer: Berlin

    Google Scholar 

  • Szentágothai, J. (1984) Downward causation. Ann. Rev. Neurosci. 7, 1–11

    Article  Google Scholar 

  • Szentágothai, J. (1985) Theorien zur Organisation und Funktion des Gehirns, Naturwissenschaften 72, 303–309

    Article  Google Scholar 

  • Szentágothai, J. and Arbib, M. (1974) Conceptual models of neural organization, Neurosci. Res. Prog. Bull. 12, 307–510

    Google Scholar 

  • von der Malsburg, Ch. (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14, 80–100

    Article  Google Scholar 

  • Wilson, H.R. and Cowan, J.D. (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80

    Google Scholar 

  • Woolsey, T.A. and van der Loos, H. (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex, Brain Res. 17, 205–242

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Szentágothai, J. (1987). The Architecture of Neural Centres and Understanding Neural Organization. In: McLennan, H., Ledsome, J.R., McIntosh, C.H.S., Jones, D.R. (eds) Advances in Physiological Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9492-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9492-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9494-9

  • Online ISBN: 978-1-4615-9492-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics