Skip to main content

Mechanisms of Water Transport Across Tubular Epithelia: Routes for Movement

  • Chapter
Advances in Physiological Research

Abstract

Continuous water pathways pierce both apical and basolateral cell membranes of the proximal kidney tubule to be used by water during osmotic equilibration between cells and luminal and peritubular media, because (a) the water osmotic permeability coefficient of apical and basolateral plasma membranes, P caos and P cbos respectively is high; (b) their activation energy, Ea, is as that of free water movement; (c) the sulfhydryl reagent pCMBS inhibits markedly (but reversibly) P caos and P cbos increasing their Ea to values similar to those observed in lipid bilayers without pores; (d) measurements of Pd, the water diffusive permeability coefficient using proton relaxation NMR indicate that (P caos + P cbos )/Pd is near 23 in controls and 3 with pCMBS. Scatchard or Hill plots of the degree of inhibition of P cbos and of Pd as a function of [pCMBS] gives values for N of 4 and 2, respectively, indicating that more than 1 pCMBS molecule binds to each water pathway to block it. In addition to these transcellular pathways, the following observations indicate that paracellular pathways for water flow exist in leaky epithelia: (a) some large extracellular solutes are dragged by water in four leaky epithelia: gall bladder, Necturus proximal tubule, rat proximal tubule and Rhodnius malpighian tubule; (b) the transcellular water osmotic permeability coefficient is smaller than the transepithelial (P teos ) values measured in the rabbit proximal straight tubule; (c) pCMBS inhibits P teos by 60% under conditions in which P cbos is inhibited much more. This requires a significant paracellular permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreoli, T.E., Schafer, J.A. and Troutman, S.L. (1981) Coupling of solute and solvent flows in porous bilayer membranes. J. Gen. Physiol. 57, 479–493.

    Article  Google Scholar 

  • Barry, P.H. and Diamond, J.M. (1984) Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64, 763–873.

    PubMed  CAS  Google Scholar 

  • Berry, C.A. (1983) Water permeability and pathways in the proximal tubule. Am. J. Physiol. 245, F279–F294.

    PubMed  CAS  Google Scholar 

  • Berry, C.A. (1985) Characteristics of water diffusion in the rabbit proximal convoluted tubule. Am. J. Physiol. 249, F729–F738.

    PubMed  CAS  Google Scholar 

  • Berry, C.A. and Boulpaep, E.L. (1975) Non electrolyte permeability of the paracellular pathway of Necturus proximal tubule. Am. J. Physiol. 228, 581–595.

    PubMed  CAS  Google Scholar 

  • Carpi-Medina, P. (1986) Estudios de la permeabilidad de los tubulos proximales aislados de riñon de conejo. Tesis Ph. Se. Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas.

    Google Scholar 

  • Carpi-Medina, P., León, V., Espidel, J. and Whittembury, G. (1986) Water diffusive permeability (Pd) of isolated proximal tubule kidney cells measured with proton NMR. 19th Ann. Meeting Am. Soc. Nephrol. 1986.

    Google Scholar 

  • Carpi-Medina, P., Lindemann, B., González, E. and Whittembury, G. (1984) The continuous measurements of tubular volume changes in response to step changes in contraluminal osmolality. Pflügers Arch. 400, 343–348.

    Article  PubMed  CAS  Google Scholar 

  • Case, R.M., Cook, D.I., Hunter, M., Steward, M.C. and Young, J.A. (1985) Transepithelial transport of non-electrolytes in the rabbit mandibular salivary gland. J. Membr. Biol. 84, 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, A. (1984) Water movement through membrane channels. Current Topics in Membranes and Transport 21, 295–308.

    CAS  Google Scholar 

  • Frömter, E. (1972) The route of passive ion movement through the epithelium of Necturus gall bladder. J. Membr. Biol. 8, 259–301.

    Article  PubMed  Google Scholar 

  • Frömter, E. (1974) Electrophysiology and isotonic fluid absorption of proximal tubules of mammalian kidney. In: Kidney and Urinary Tract Physiology. Thurau, K., ed., Butterworths: London, 6, 1–38.

    Google Scholar 

  • Frömter, E. (1970) Elektrophysiologische Untersuchungen am proximalen Tubulus der Rattenniere. Habilitationschrift. Johan Goethe Universität: Frankfurt.

    Google Scholar 

  • Gonzalez, E., Carpi-Medina, P., Linares, H. and Whittembury, G. (1984) Water osmotic permeability of the apical membrane of proximal straight tubular (PST) cells. Pflügers Arch. 402, 337–339.

    Article  Google Scholar 

  • Green, R. and Giebisch, G. (1984) Luminal hypotonicity as a driving force for fluid absorption from the proximal convoluted tubule of the rat. Am. J. Physiol. 246, F167–F174.

    PubMed  CAS  Google Scholar 

  • Hill, A.E. and Hill, B.S. (1978) Sucrose fluxes and junctional water flow across Necturus gall bladder epithelium. Proc. Roy. Soc. B: 200, 151–162.

    Article  CAS  Google Scholar 

  • Levitt, D.G. (1984) Kinetics of movement in narrow channels. Current Topics in Membranes and Transport 21, 181–197.

    CAS  Google Scholar 

  • McLaughlin, S. and Mathias, R.T. (1985) Electroosmosis and the reabsorption of fluid in the renal proximal tubules. J. Gen. Physiol. 85, 699–728.

    Article  PubMed  CAS  Google Scholar 

  • Moura, T., Macey, R.I., Chien, D.Y., Karan, D. and Santos, H. (1984) Thermodynamics of all-or-none water channel closure in red cells. J. Membr. Biol. 81, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Naftalin, R.J. and Tripathi, S. (1986) The roles of paracellular and transcellular pathways and submucosal space in isotonic water absorption by rabbit ileum. J. Physiol. (Lond.) 370, 409–432.

    CAS  Google Scholar 

  • Pratz, J., Ripoche, P. and Corman, B. (1986) Evidence for proteic water pathways in the luminal membrane of kidney proximal tubules. Biochim. Biophys. Acta. 856, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Preisig, P.A. and Berry, C.A. (1985) Evidence for transcellular osmotic water flow in rat proximal tubules. Am. J. Physiol. 249, F124–F131.

    PubMed  CAS  Google Scholar 

  • Schafer, J.A. (1984) Mechanisms coupling the absorption of solutes and water in the proximal nephron. Kidney Int. 25, 708–716.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, J.A., Patlak, C.S., Troutman, S.L. and Andreoli, T.E. (1978) Volume regulation in the pars recta. Am. J. Physiol. 234, F340–F348.

    PubMed  CAS  Google Scholar 

  • Solomon, A.K., Chasan, G., Dix, J.A., Lukacovic, M.F., Toon, M.R. and Verkman, A.S. (1983) Possible relation between anion transport and water flow in red cells. Ann. N.Y. Acad. Sci. 414, 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Spring, K.R. and Hope, A. (1979) Size and shape of the lateral interspaces in a living epithelium. Science 200, 54–58.

    Article  Google Scholar 

  • Steward, M.C. and Garson, M.J. (1985) Water permeability of Necturus gall bladder epithelial cell membranes measured by NMR. J. Membr. Biol. 86, 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, A.M. and Windhager, E.E. (1985) Sodium transport along the proximal tubule. In: The Kidney, Physiology and Pathophysiology. Seldin, D.W. and Giebisch, G., eds., Raven Press: New York pp 1033–1062.

    Google Scholar 

  • Williams, J.C., Barfuss, D.W. and Schafer, J.A. (1986) Transport of solute in proximal tubule is modified by changes in medium osmolality. Am. J. Physiol. 250, F246–F255.

    PubMed  CAS  Google Scholar 

  • Whittembury, G. (1985) Mechanisms of epithelial solute-solent coupling. In: The Kidney, Physiology and Pathophysiology. Seldin, D.W. and Giebisch, G., eds., Raven Press: New York pp 199–214.

    Google Scholar 

  • Whittembury, G., Carpi-Medina, P., González, E. and Linares, H. (1984) Effect of para-chloromercuribenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules. Biochim. Biophys. Acta 775, 365–373.

    Article  PubMed  CAS  Google Scholar 

  • Whittembury, G. and Hill, B.S. (1982) Fluid reabsorption by necturus proximal tubule perfused with solutions of normal and reduced osmolarity. Proc. Roy. Soc. B: 215, 411–431.

    Article  CAS  Google Scholar 

  • Whittembury, G., Malnic, G., Mello-Aires, M. and Amorena, C. (1981) Flujo paracelular de agua en túbulo renal proximal de rata. Acta Científ. Venezol. 32, suppl 1, 40.

    Google Scholar 

  • Whittembury, G., Biondi, A.C., Paz-Aliaga, A., Linares, H., Parthe, V. and Linares, N. (1986) Transcellular and paracellular flow of water during secretion in the upper segment of the malpighian tubule of Rhodnius prolixus: solvent drag of grades sized molecules. J. Exp. Biol. 123, 71–92.

    CAS  Google Scholar 

  • Whittembury, G. and Rawlins, F.A. (1971) Evidence of a paracellular pathway for ion flow in the kidney proximal tubule: electronmicroscopic demonstration of lanthanum precipitate in the tight junction. Pflügers Arch. 330, 302–309.

    Article  PubMed  CAS  Google Scholar 

  • Whittembury, G., Verde-Martínez, C., Linares, H. and Paz-Aliaga, A. (1980) Solvent drag of large solutes indicates paracellular water flow in leaky epithelia. Proc. Roy. Soc. B 211, 63–81.

    Article  CAS  Google Scholar 

  • Windhager, E.E. (1979) Sodium chloride transport. In: Membrane Transport in Biology vol 4a, Giebisch, G., Tosteson, D.C. and Ussing, H.H., eds., Springer: Berlin, pp 143–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Whittembury, G., Carpi-Medina, P. (1987). Mechanisms of Water Transport Across Tubular Epithelia: Routes for Movement. In: McLennan, H., Ledsome, J.R., McIntosh, C.H.S., Jones, D.R. (eds) Advances in Physiological Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9492-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9492-5_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9494-9

  • Online ISBN: 978-1-4615-9492-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics