Skip to main content

The Role of Mitochondria in the Control of Cellular Calcium Homeostasis

  • Chapter
  • 73 Accesses

Abstract

Demonstration of an active Ca2+ transport system in the mitochondrial inner membrane has led to investigation of the physiological function of this activity. Control of intracellular Ca2+ ion homeostasis and/or modulation of mitochondrial metabolism may be important consequences of Ca2+ flux across the mitochondrial membrane. Distribution of Ca2+ between the cytosol and the two major intracellular Ca2+ transport organelles (the mitochondria and the reticular network) will be determined by the environmental levels of Ca2+ and the kinetic constants of each system. The high affinity (but low capacity) of the reticulum for Ca2+ is within the range of cytosolic Ca2+ buffering, i.e., from 150–200 nM, and is dealt with elsewhere in this symposium. The ability of the mitochondria to respond to changing Ca2+ concentrations in order to activate metabolism or to buffer cytosolic Ca2+ is dependent upon intracellular conditions which may affect the transporters. Mitochondrial Ca2+ flux Is controlled by both an import pathway and an export pathway which are thought to operate in parallel. Any alteration in the balance between the two pathways can affect cytosolic Ca2+ buffering and/or modulate energy production via Ca2+ sensitive dehydrogenase activities in the mitochondrial matrix. Mitochondrial Ca2+ uptake is a low affinity, high capacity process, linked to the fundamental energy producing mechanism across the inner membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affolter, H. and Carafoli, E. (1980) The Ca2+-Na+ antiporter of heart mitochondria operates electroneutrally. Biochem, Biophys. Res. Commun. 95, 193–196.

    Article  CAS  Google Scholar 

  • Akerman, K.E.O. (1978) Effect of pH and Ca2+ on the retention of Ca2+ by liver mitochondria. Arch. Biochem. Biophys. 189, 256–262.

    Article  PubMed  CAS  Google Scholar 

  • Beatrice, M.C., Stiers, D.L. and Pfeiffer, D.R. (1984) The role of glutathione in the retention of Ca2+ by liver mitochondria. J. Biol. Chem. 259, 1279–1287.

    PubMed  CAS  Google Scholar 

  • Becker, G.L., Fiskum, G. and Lehninger, A.L. (1980) Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum. J. Biol. Chem. 255, 9009–9012.

    PubMed  CAS  Google Scholar 

  • Burgess, G.M., McKinney, J.S., Fabiato, A., Leslie, B.A. and Putney, J.W. (1983) Calcium pools in saponin-permeabilized guinea pig hepatocytes. J. Biol. Chem. 258, 15336–15345.

    PubMed  CAS  Google Scholar 

  • Chance, B. (1965) The energy-linked reaction of calcium with mitochondria. J. Biol. Chem. 240, 2729–2748.

    PubMed  CAS  Google Scholar 

  • Coll, K.E., Joseph, S.K., Corkey, B.E. and Williamson, J.R. (1982) Determination of the matrix free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart metochondria. J. Biol. Chem. 257, 8696–8704.

    PubMed  CAS  Google Scholar 

  • Crompton, M. (1980) The sodium ion/calcium ion cycle of cardiac mitochondria. Trans. Biochem. Soc. 8, 261–262.

    CAS  Google Scholar 

  • Crompton, M., Capano, M. and Carafoli, E. (1976) The sodium-induced efflux of calcium from heart mitochondria. A possible mechanism for the regulation of mitochondrial calcium. Eur. J. Biochem. 69, 453–462.

    Article  CAS  Google Scholar 

  • Denton, R.M. and McCormack, J.G. (1985) Ca2+ transport by mammalian mitochondria and its role in hormone action. Am. J. Physiol. 249, E543–E554.

    PubMed  CAS  Google Scholar 

  • Fiskum, G. and Cockrell, R.S. (1978) Ruthenium red sensitive and insensitive calcium transport in rat liver and Ehrlich ascites tumor cell mitochondria. FEBS Lett. 92, 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Fiskum, G. and Cockrell, R.S. (1983) Uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria. Arch. Biochem. Blophys. 240, 723–733.

    Article  Google Scholar 

  • Fiskum, G. and Lehninger, A.L. (1979) Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport. J. Biol. Chem. 254, 6236–6239.

    PubMed  CAS  Google Scholar 

  • Goldstone, T.P. and Crompton, M. (1982) Evidence for β-adrenergic activation of Na+-dependent efflux of Ca2+ from isolated liver mitochondria. Biochem. J. 204, 369–371.

    PubMed  CAS  Google Scholar 

  • Gunter, T.E., Chace, J.H., Puskin, J.S. and Gunter, K.K. (1983) Mechanism of sodium independent calcium efflux from rat liver mitochondria. Biochemistry 22, 6341–6351.

    Article  PubMed  CAS  Google Scholar 

  • Hansford, R.G. (1985) Relation between mitochondrial calcium transport and control of energy metabolism. Rev. Physiol. Biochem. Pharmacol. 102, 1–72.

    Article  PubMed  CAS  Google Scholar 

  • Hansford, R.G. Biochem. J. (1986), in press.

    Google Scholar 

  • Hansford, R.G. and Castro, F. (1982) Intramitochondrial and extramitochondrial free calcium ion concentrations of suspensions of heart mitochondria with very low, plausibly physiological, contents of total calcium. J. Bioenerg. Biomembr. 14, 361–376.

    Article  PubMed  CAS  Google Scholar 

  • Harris, E.J., Al-Shaikhaly, M. and Baum, H. (1979) Stimulation of mitochondrial calcium ion efflux by thiol-specific reagents or by thyroxine. Biochem. J. 182, 455–464.

    PubMed  CAS  Google Scholar 

  • Harris, E.J. and Cooper, M.B. (1981) Calcium and magnesium ion losses in response to stimulants of efflux applied to heart, liver and kidney mitochondria. Biochem. Biophys. Res. Comm. 103, 788–796.

    Article  PubMed  CAS  Google Scholar 

  • Harris, E.J. and Heffron, J.J.A. (1982) The stimulation of the release of Ca2+ from mitochondria by sodium ions and its inhibition. Arch. Biochem. Biophys. 218, 531–539.

    Article  PubMed  CAS  Google Scholar 

  • Hayat, L.H. and Crompton, M. (1982) Evidence for the existence of regulatory sites for Ca2+ on the Na+/Ca2+ carrier of cardiac mitochondria. Biochem. J. 202, 509–518.

    PubMed  CAS  Google Scholar 

  • Heffron, J.J.A. and Harris, E.J. (1981) Stimulation of calcium-ion efflux from liver mitochondria by sodium ions and its response to ADP and energy state. Biochem. J. 194, 925–929.

    PubMed  CAS  Google Scholar 

  • Henry, P.D., Shuchleib, R., Davis, J., Weiss, E.S. and Sobel, B.E. (1977) Myocardial contracture and accumulation of mitochondrial calcium in ischemic rabbit heart. Am. J. Physiol. 233, H677–H684.

    PubMed  CAS  Google Scholar 

  • Joseph, S.K., Coll, K.E., Cooper, R.H., Marks, J.S. and Williamson, J.R. (1983) Mechanisms underlying calcium homeostasis in isolated hepatocytes. J. Biol. Chem. 258, 740–741.

    Google Scholar 

  • Jurkowitz, M.S. and Brierley, G.P. (1982) H+-dependent efflux of Ca2+ from heart mitochondria. J. Bloenerg. Biomembr. 14, 435–449.

    Article  CAS  Google Scholar 

  • Lehninger, A.L. (1974) Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria. Proc. Nat. Acad. Sci., USA 71, 1520–1524.

    Article  CAS  Google Scholar 

  • McCormack, J.G. and Denton, R.M. (1985) Hormonal control of intramitochondrial Ca2+-sensitive enzymes in heart, liver and adipose tissue. Trans. Biochem. Soc. 13, 664–667.

    CAS  Google Scholar 

  • McCormack, J.G. and Denton, R.M. (1986) Ca2+ as a second messenger within mitochondria. TIBS, 11, 258–262

    CAS  Google Scholar 

  • McMillin-Wood, J., Wolkowicz, P.E., Chu, A., Tate, C.A., Goldstein, M.A. and Entman, M.L. (1980) Calcium uptake by two preparations of mitochondria from heart. Biochim. Biophys. Acta. 591, 251–265.

    Article  PubMed  CAS  Google Scholar 

  • Mela, L. (1968) Interactions of La3+ and local anesthetic drugs with mitochondrial Ca++ and Mn++. uptake. Arch. Biochem, Biophys. 123, 286–293.

    Article  CAS  Google Scholar 

  • Moore, C.L. (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem, Biophys. Res. Comm. 42, 298–305.

    Article  CAS  Google Scholar 

  • Nicchitta, C.V. and Williamson, J.R. (1984) Spermine. A regulator of mitochondrial calcium cycling. J. Biol. Chem. 259, 12978–12983.

    PubMed  CAS  Google Scholar 

  • Nicholls, D.G. (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem. J. 176, 463–474

    PubMed  CAS  Google Scholar 

  • Puskin, J.S. and Gunter, T.E. (1973) Ion and pH gradients across the transport membrane of mitochondria following Mn uptake in the presence of acetate. Biochem. Biophys. Res. Comm. 51, 797–803.

    Article  PubMed  CAS  Google Scholar 

  • Puskin, J.S., Gunter, T.E., Gunter, K.K. and Russell, P.R. (1976) Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry 15, 3834–3842.

    Article  PubMed  CAS  Google Scholar 

  • Rottenberg, H. and Scarpa, A. (1974) Calcium uptake and membrane potential In mitochondria. Biochemistry 13, 4811–4817.

    Article  PubMed  CAS  Google Scholar 

  • Scarpa, A. and Graziotti, P. (1973) Mechanisms for intracellular calcium regulation in heart. I. Stopped-flow measurements of Ca2+ uptake by cardiac mitochondria. J. Gen. Physiol. 62, 756–772.

    Article  PubMed  CAS  Google Scholar 

  • Skrede, S. (1966) Effects of cystamine and cysteamine on the adenosine-triphosphatase activity and oxidative phosphorylation of rat-liver mitochondria. Biochem. J. 98, 702–708.

    PubMed  CAS  Google Scholar 

  • Vaghy, P.L., Johnson, J.D., Matlib, M.A., Wang, T. and Schwartz, A. (1982) Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs. J. Biol. Chem. 257, 6000–6002.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

McMillin, J.B. (1987). The Role of Mitochondria in the Control of Cellular Calcium Homeostasis. In: McLennan, H., Ledsome, J.R., McIntosh, C.H.S., Jones, D.R. (eds) Advances in Physiological Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9492-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9492-5_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9494-9

  • Online ISBN: 978-1-4615-9492-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics