Skip to main content

Material Derivative Methods for Shape Design Sensitivity Analysis

  • Chapter
The Optimum Shape

Part of the book series: General Motors Research Laboratories Symposia Series ((RLSS))

Abstract

Use of the material derivative concept of continuum mechanics to relate variations in structural shape to measures of structural performance is reviewed. Alternate formulations of design sensitivity analysis are obtained in the form of boundary integrals and domain integrals. Theoretical implications of the resulting formulations are developed to include the dependence of performance on only normal variation of the boundary and the need for evaluation of trace operators for projection of stress and strain related quantities onto the boundary. Computational implications of shape design sensitivity formulations are investigated, including compatibility of design sensitivity analysis with finite element and boundary element methods of structural analysis, parameterization of boundary shape and parameterization of design velocity fields. Implementation of shape design sensitivity analysis using finite element computer codes is discussed. Recent numerical results are used to illustrate the accuracy that is achievable using methods for material derivative shape design sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. T. Haftka and M. P. Kamat, Elements of Structural Optimization. Martinus Nijhoff Publishers, Boston (1985).

    MATH  Google Scholar 

  2. E. J. Haug, K. K. Choi and V. Komkov, Design Sensitivity Analysis of Structural Systems. Academic Press, New York, (1986).

    MATH  Google Scholar 

  3. M. E. Botkin, Shape optimization of plate and shell structures. AIAA J., 20 (2), 268–273 (1982).

    Article  Google Scholar 

  4. A. Francavilla, C. V. Ramakrishnan and O. C. Zienkiewicz, Optimization of shape to minimize stress concentration. J. Strain Analysis 10 (2), 63–70 (1975).

    Article  Google Scholar 

  5. V. Braibant and C. Fleury, Shape optimal design using b-splines, Computer Meth. Appl. Mech. Eng. 44, 247–267 (1984).

    Article  MATH  Google Scholar 

  6. K. Dems and Z. Mroz, Variational approach by means of adjoint systems to structural optimization and sensitivity analysis — II Structural shape variation. Int. J. Solids Struct. 20 (6), 527–552 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Cea, Problems of shape optimal design, pp. 1005–1048 in Optimization of Distributed Parameter Structures, (Edited by E.J. Haug and J. Cea). Sijthoff and Noordhoff, The Netherlands (1981).

    Chapter  Google Scholar 

  8. E.J. Haug, K.K. Choi, J.W. Hou and Y.M. Yoo, A variational method for shape optimal design of elastic structures, pp. 105–137 in New Directions in Optimum Structural Design, (Edited by E. Atrek, R. H. Gallagher, K. M. Ragsdell and O. C. Zienkiewicz). John Wiley and Sons (1984).

    Google Scholar 

  9. K. K. Choi and E. J. Haug, Shape design sensitivity analysis of elastic structures. J. Struct. Mech. 11 (2), 231–269 (1983).

    Article  MathSciNet  Google Scholar 

  10. N. V. Banichuk, Optimization of elastic bars in torsion. Int. J. Solids Struct. 12, 275–286 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. S. Na, N. Kikuchi and J. E. Taylor, Shape optimization for elastic torsion bars, pp. 216–223 in Optimization Methods in Structural Design, (Edited by H. Eschenauer and N. Olhoff). Bibliographisches Institut, Zurich, Switzerland (1983).

    Google Scholar 

  12. R. J. Yang and M. E. Botkin, The relationship between the variational approach and the implicit differentiation approach to shape design sensitivities. The Optimum Shape: Automated Structural Design (Edited by J. A. Bennett and M. E. Botkin). Plenum Press, New York (1986).

    Google Scholar 

  13. J. S. Sokolnikoff, Mathematical Theory of Elasticity. McGraw-Hill, New York (1956).

    MATH  Google Scholar 

  14. J-P. Zolesio, The material derivative (or speed) method for shape optimization, pp. 1089–1151 in Optimization of Distributed Parameter Structures (Edited by E. J. Haug and J. Cea). Sijthoff and Noordhoff, The Netherlands (1981).

    Chapter  Google Scholar 

  15. J-P. Zolesio, Gradient des coûte governes par des problems de Neumann poses des wuverts anguleux en optimization de domain. CRMA-Report 116, University of Montreal, Canada (1982).

    Google Scholar 

  16. W. Kecs and P. P. Teodorescu, Application of the Theory of Distributions in Mechanics. Abacus Press, Tunbridge Wells, England, (1974).

    Google Scholar 

  17. I. Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, pp. 1–359 in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press (1972).

    Google Scholar 

  18. C. A. Brebbia and S. Walker, Boundary Element Techniques in Engineering. Newnes-Butterworths, Boston, MA (1980).

    MATH  Google Scholar 

  19. P. K. Banerjee and R. Butterfield, Boundary Element Methods in Engineering Science. McGraw-Hill, London (1981).

    MATH  Google Scholar 

  20. K. K. Choi and H. G. Seong, A domain method for shape design sensitivity analysis of built-up structures. Computer Methods in Applied Mechanics and Engineering (1986), to appear.

    Google Scholar 

  21. K. K. Choi, Shape design sensitivity analysis of displacement and stress constraints. J. Struct. Mech. 13 (1), 27–41 (1985).

    Article  Google Scholar 

  22. H. G. Seong and K. K. Choi, Boundary layer approach to shape design sensitivity analysis. J. Struct. Mech. (1986), to appear.

    Google Scholar 

  23. K. K. Choi and H. G. Seong, Design component method for sensitivity analysis of built-up structures. J. Struct. Mech. (1986), to appear.

    Google Scholar 

  24. K. K. Choi and H. G. Seong, A numerical method for shape design sensitivity analysis and optimization of built-up structures. The Optimum Shape: Automated Structural Design (Edited by J. A. Bennett and M. E. Botkin). Plenum Press, New York (1986).

    Google Scholar 

  25. R. J. Yang and K. K. Choi, Accuracy of finite element based design sensitivity analysis. J. Struct. Mech., 13 (2), 223–239 (1985).

    Article  Google Scholar 

  26. C. A. Mota Soares, H. C. Rodrigues, L. M. Oliveira Faria and E. J. Haug, Optimization of the geometry of shafts using boundary elements. J. Mech. Transm. Autom. Des., 106 (1), 199–202 (1984).

    Article  Google Scholar 

  27. C. A. Mota Soares, H. C. Rodrigues and K. K. Choi, Shape optimal structural design using boundary element and minimum compliance techniques J. Mech. Transm. Autom. Des., 106 (4), 516–521 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Haug, E.J., Choi, K.K. (1986). Material Derivative Methods for Shape Design Sensitivity Analysis. In: Bennett, J.A., Botkin, M.E. (eds) The Optimum Shape. General Motors Research Laboratories Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9483-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9483-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9485-7

  • Online ISBN: 978-1-4615-9483-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics