Skip to main content

Adaptive Analysis Refinement and Shape Optimization—Some New Possibilities

  • Chapter
The Optimum Shape

Part of the book series: General Motors Research Laboratories Symposia Series ((RLSS))

Abstract

Engineers have turned to shape optimization of structures to assure the efficient use of finite element analysis in producing safe and economical designs. Constraints on stresses and displacements should however be imposed with an accuracy commensurate with the degree of precision attainable in the analysis. A progressive refinement strategy can be used to increase the accuracy as the optimal design is approached and constraints are most critical. For this reason a simple and efficient error estimation capacity and an adaptive refinement strategy must be incorporated into the design program. This chapter will describe a new and efficient error estimation method based on mixed formulation concepts which can be incorporated into any existing program framework. In addition, a relatively simple refinement strategy will be shown which for a given problem can be designed to yield a specified accuracy of stress computation. Finally, a review of the methods used in shape optimization indicates the need for efficient mesh generation capabilities. If these can be combined with the indicators of error, then the objectives outlined above can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Ricketts and O. C. Zienkiewicz, Shape optimization of continuum structures, Ch. 6 in New Directions in Optimum Structural Design (Edited by E. Atrek, R. H. Gallagher, K. M. Ragsdell and O. C. Zienkiewicz). John Wiley & Sons (1984).

    Google Scholar 

  2. M. E. Botkin and J. A. Bennett, The application of adaptive mesh refinement to shape optimization of plate structures, Ch. 13 in Adaptive Refinement on Error Estimates in Finite Element Analysis. John Wiley & Sons (1986), to be published.

    Google Scholar 

  3. G.N. Vanderplaats, Numerical methods for shape optimization: An assessment of the state of the art, Ch. 4 in New Directions in Optimum Structural Design (Edited by E. Atrek, R. H. Gallagher, K. M. Ragsdell and O. C. Zienkiewicz). John Wiley & Sons (1984).

    Google Scholar 

  4. I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (4) (1978).

    Google Scholar 

  5. I. Babuška and M. Dorr, Error estimates for the combined h and p versions of the finite element method. Numer. Math. 25, 257–277 (1981).

    Article  Google Scholar 

  6. D. W. Kelly, J. P. de S. R. Gago, O. C. Zienkiewicz and I. Babuška, A posteriori error analysis and adaptive processes in the finite element method-Part 1: Error analysis. Int. J. Numer. Meth. Eng. 19, 1593–1619 (1983).

    Article  MATH  Google Scholar 

  7. J. P. de S. R. Gago, D. W. Kelly, O. C. Zienkiewicz and I. Babuška, A posteriori error analysis and adaptive processes in the finite element method-Part 2: Adaptive mesh refinement. Int. J. Numer. Meth. Eng. 19, 1621–1656 (1983).

    Article  MATH  Google Scholar 

  8. O. C. Zienkiewicz, J. P. de S. R. Gago and D. W. Kelly, The hierarchical concept in finite element analysis. Comput. Struct. 16, 53–65 (1983).

    Article  MATH  Google Scholar 

  9. O. C. Zienkiewicz and A. W. Craig, Adaptive mesh refinement and a posteriori error estimation for the p version of the finite element method, in Adaptive Computational Methods for Partial Differential Equations (Edited by I. Babuška, Chandra and Flaherty). SIAM (1983).

    Google Scholar 

  10. O. C. Zienkiewicz, The Finite Element Method, 3rd ed. McGraw-Hill, New York (1977).

    MATH  Google Scholar 

  11. O. C. Zienkiewicz, J-P. Vilotte, S. Toyoshima and S. Nakazawa, Iterative method for constrained and mixed approximation: An inexpensive improvement of FEM performance. Comput. Meth. Appl. Mech. Eng., 51 3–29 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  12. O. C. Zienkiewicz, X-K Li and S. Nakazawa, Iterative solution of mixed problem and stress recovery procedures. Commun. Appl. Numer. Meth. 1 (3–9) (1985).

    Google Scholar 

  13. O. C. Zienkiewicz, X-K Li and S. Nakazawa, Dynamic transient analysis of a mixed, iterative method. Int. J. Numer. Meth. Eng. (1986), to appear.

    Google Scholar 

  14. G. Cantin, G. Loubignac and G. Touzot, An iterative algorithm to build continuous stress and displacement solutions. Int. J. Numer. Meth. Eng. 12, 1493–1500 (1978).

    Article  MATH  Google Scholar 

  15. O. Lev (Ed.), Structural Optimization Recent Developments and Applications. ASCE, New York (1981).

    Google Scholar 

  16. E. J. Haug, A review of distributed parameter structural optimization literature, in Optimization of Distributed Parameter Structures (Edited by E. Haug and J. Cea). Sijthoff-Noordhoff, The Netherlands (1981).

    Google Scholar 

  17. O. C. Zienkiewicz and J. S. Campbell, Shape optimization and sequential linear programming, in Optimum Structural Design (Edited by R. H. Gallagher and O. C. Zienkiewicz). John Wiley & Sons, New York (1973).

    Google Scholar 

  18. B. M. E. DeSilva, Feasible direction methods in structural optimization, in Optimum Structural Design (Edited by R. H. Gallagher and O. C. Zienkiewicz). John Wiley & Sons, New York (1973).

    Google Scholar 

  19. J. P. Quéau and Ph. Trompette, Two-dimensional shape optimal design by the finite element method. Int. J. Numer. Meth. Eng. 15, 1603–1612 (1980).

    Article  MATH  Google Scholar 

  20. C. V. Ramakrishnan and A. Francavilla, Structural shape optimization using penalty function. J. Struct. Mech. 4 (3), 403–422 (1974).

    Article  Google Scholar 

  21. F. Vitiello, Shape optimization using mathematical techniques. 2nd Symp. on Structural Optimization. AGARD CP-123 (Apr. 1973).

    Google Scholar 

  22. S. Y. Wang, Y. Sun and R. H. Gallagher, Sensitivity analysis in shape optimization of continuum structures. Comput. Struct. 20 (5), 855–867 (1985).

    Article  MATH  Google Scholar 

  23. M. H. Imam, Three-dimensional shape optimization. Int. J. Numer. Meth. Eng. 18 (5) 635–673 (1982).

    Article  Google Scholar 

  24. M. E. Botkin, Shape optimization of plate and shell structures. AIAA J. 20 (2) 268–273 (1981).

    Article  Google Scholar 

  25. J. A. Bennett and M. E. Botkin, Structural shape optimization with geometric description and adaptive mesh refinement. AIAA J. 23 (3) 458–464 (1985).

    Article  Google Scholar 

  26. J. Middleton, Optimal shape design to minimize stress concentration factors in pressure vessel components. Proc. Int. Symp. on Optimum Structural Design. Tucson, AZ (Oct. 1981).

    Google Scholar 

  27. E. Schnack, An optimization procedure for stress concentration by the finite element technique. Int. J. Numer. Meth. Eng. 14, 115–124 (1979).

    Article  MATH  Google Scholar 

  28. E. S. Kristensen and N. F. Madsen, On the optimum shape of fillets in plates subjected to multiple inplane loading cases. Int. J. Numer. Meth. Eng. 10, 1006–1019 (1976).

    Article  Google Scholar 

  29. K. Dems and Z. Mróz, Multiparameter shape optimization by the finite element method. Int. J. Numer. Meth. Eng. 13, 247–263 (1978).

    Article  MATH  Google Scholar 

  30. J. P. Quéau and Ph. Trompette, Optimal shape design of turbine and compressor blades. Proc. Int. Symp. on Optimum Structural Design. Tuscon, AZ (Oct. 1981).

    Google Scholar 

  31. A. Francavilla, C. V. Ramakrishnan and O. C. Zienkiewicz, Optimization of shape to minimize stress concentration. J. Strain Anal. 10 (2), 63–70 (1975).

    Article  Google Scholar 

  32. R. A. Meric, Boundary element methods for optimization of distributed parameter systems, Int. J. Numer. Meth. Eng. 20 (10), 1291–1306 (1984).

    Article  MATH  Google Scholar 

  33. J. O. Song, and R. E. Lee, Application of optimization to aircraft engine disk synthesis. Proc. Int. Symp. on Optimum Structural Design. Tucson, AZ (Oct. 1981).

    Google Scholar 

  34. Y. W. Chun and E. J. Haug, Two-dimensional shape optimum design. Int. J. Numer. Meth. Eng. 13, 311–336 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  35. E. J. Haug, K. K. Choi, J. W. Hou and Y. M. Yoo, A variational method for shape optimal design of elastic structures, in New Directions in Optimum Structural Design. (Edited by E. Atrek, R. H. Gallagher, K. M. Ragsdell and O. C. Zienkiewicz). John Wiley & Sons, New York (1984).

    Google Scholar 

  36. W. Prager, Conditions for optimality. Comput. Struct. 2, 833–840 (1972).

    Article  Google Scholar 

  37. M. S. Na, N. Kikuchi and J. E. Taylor, Optimal shape remodeling of linearly elastic plates using finite element methods. Int. J. Numer. Meth. Eng. 20 (10), 1823–1840 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. S. Na, N. Kikuchi and J. E. Taylor, Optimal modification of shape for two-dimensional elastic bodies. J. Struct. Mech. 11, 111–135 (1983).

    Article  MathSciNet  Google Scholar 

  39. Y. Tada and Y. Seguchi, Shape determination of structures based on the inverse variational principle/finite element approach, Ch. 8 in New Directions in Optimal Structural Design. (Edited by E. Atrek, R. H. Gallagher, K. M. Ragsdell and O. C. Zienkiewicz). John Wiley & Sons, New York (1984).

    Google Scholar 

  40. W. R. Spillers and S. Singh, Shape optimization: Finite element example. Proc. ASCE, J. Struct Div., Vol. 107, ST10, pp. 2015–2025 (Oct. 1981).

    Google Scholar 

  41. L. R. Friedland, Geometric structural behavior. Ph.D. Dissertation, Columbia University (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Zienkiewicz, O.C., Craig, A.W., Zhu, J.Z., Gallagher, R.H. (1986). Adaptive Analysis Refinement and Shape Optimization—Some New Possibilities. In: Bennett, J.A., Botkin, M.E. (eds) The Optimum Shape. General Motors Research Laboratories Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9483-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9483-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9485-7

  • Online ISBN: 978-1-4615-9483-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics