Skip to main content

Semiempirical Molecular Orbital Studies of Intrinsic Defects in a-SiO2

  • Chapter

Abstract

The intrinsic point defects in a-SiO2 have recently received considerable attention. Careful use of paramagnetic resonance, coupled with annealing and optical studies, has led to unambiguous identification of three fundamental defects. These are the E′ center, the superoxide radical and the nonbridging oxygen hole center (NBOHC). Theoretical studies of the first two defects have led to greater understanding of experiment through inclusion of atomic relaxation. Two models exist for the NBOHC. One, by Skuja and Silin, invokes a Jahn-Teller splitting to explain 2 eV optical transitions. The other, by Griscom, is an extension of a model devised for alkali silicate glasses and involves pairs of oxygens, one of which is adjacent to a proton. Using MOPN, a semiempirical spin-unrestricted molecular orbital program, we have done molecular orbital studies of both NBOHC models. Our results support the Griscom model and not the Skuja-Silin model. These results, coupled with our earlier calculations on the E′ and superoxide defects, allow us to address defect formation and transformation processes in a logical way. In particular, these results are consistent with our speculations on the sequential creation of NBOHC, superoxide precursor, and superoxide radical by hole trapping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. DiMaria, in The Physics of SiO 2 and its Interfaces, ed. S. T. Pantelides, Pergamon, New York, 160:references therein, (1978).

    Google Scholar 

  2. R. A. Weeks and C. M. Nelson, J. Am. Ceram. Soc. 43:399 (1960).

    Article  Google Scholar 

  3. D. L. Griscom, Phys. Rev. B22:1729 (1980).

    ADS  Google Scholar 

  4. M. Stapelbroek, D. L. Griscom, E. J. Friebele and G. H. Sigel, Jr., J. Non-Cryst. Solids 32:313 (1979).

    Article  ADS  Google Scholar 

  5. The water content of fused silica is measured in ppm OH. The dryest fused silica, suprasil Wl, contains 5–10 ppm OH, while suprasil 1 contains ~ 1200 ppm OH. Recent SIMS studies of thermal MOS oxides indicate there is at least 5–10 ppm OH in the oxide for even the dryest growing conditions. (R. Gale, F. J. Feigl, C. W. Magee, and D. R. Young, J. Appl. Phys. 54:6938 (1983)).

    Article  ADS  Google Scholar 

  6. F. L. Galeener and M. F. Thorpe, Phys. Rev. B28:5802 (1983).

    ADS  Google Scholar 

  7. A. E. Geissberger and F. L. Galeener, Phys. Rev. B28:3266 (1983).

    ADS  Google Scholar 

  8. J. C. Phillips, in Solid State Physics, ed. F. Seitz and D. Turnbull, Academic Press, New York, 37:93 (1982).

    Google Scholar 

  9. As examples we cite references 3 and 4.

    Google Scholar 

  10. L. N. Skuja and A. R. Silin, Phys. Stat. Sol. (a) 70:43 (1982).

    Article  ADS  Google Scholar 

  11. R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc. 97:1285 (1975).

    Article  Google Scholar 

  12. P. Bischof, J. Am. Chem. Soc. 98:6844 (1976).

    Article  Google Scholar 

  13. A. H. Edwards and W. B. Fowler, J. Phys. Chem. Sol. 46:841 (1985).

    Article  ADS  Google Scholar 

  14. P. C. Taylor, J. F. Baugher and H. M. Kriz, Chem. Rev. 75:205 (1975).

    Article  Google Scholar 

  15. F. J. Feigl, W. B. Fowler, and K. L. Yip, Sol. State. Comm. 14:225 (1974).

    Article  ADS  Google Scholar 

  16. K. L. Yip and W. B. Fowler, Phys. Rev. B11:2327 (1975).

    ADS  Google Scholar 

  17. R. H. Silsbee, J. Appl. Phys. 32:1459 (1961).

    Article  ADS  Google Scholar 

  18. D. L. Griscom, E. J. Friebele and G. H. Sigel, Jr., Sol. State Comm. 15:479 (1974).

    Article  ADS  Google Scholar 

  19. D. L. Griscom, Nucl. Inst. and Methods Bl:481 (1984).

    ADS  Google Scholar 

  20. M. G. Jani, R. B. Bossoli, and L. E. Halliburton, Phys. Rev. B27:2285 (1983).

    ADS  Google Scholar 

  21. At this conference, we have heard about three spectroscopically different E′ centers in a-SiO2. In this chapter, we will only consider the E′ γ center.

    Google Scholar 

  22. H. A. Jahn and E. Teller, Proc. Roy. Soc. London A161:220 (1937).

    ADS  Google Scholar 

  23. F. S. Ham, Phys. Rev. B8:2926 (1973).

    ADS  Google Scholar 

  24. J. K. Rudra and W. B. Fowler, Bull. Am. Phys. Soc. 30:369 (1985).

    Google Scholar 

  25. A. H. Edwards and W. B. Fowler, Phys. Rev. B26:6649 (1982).

    ADS  Google Scholar 

  26. Recently, Jani, Bossoli and Halliburton have performed an extensive study on the formation mechanisms and the spin Hamiltonian parameters of the E1′ center in alpha quartz (Ref. 20). In this study they proposed a new model, based on an analysis of the angular dependence of the weak hyperfine lines. The two sets of lines are attributed to two of the next nearest neighbor silicon atoms, each bonded to one of the back-bonded oxygen atoms in the lower half of Fig, la. Further, the absence of a hyperfine signal from the third silicon atom on this side of the defect was attributed to a second oxygen vacancy. This is in stark contrast to the Feigl-Fowler-Yip model, wherein the two sets of weak hyperfine lines are attributed to the silicon atom in the upper half of Fig. la, and to another unspecified silicon atom. The recent calculations of Rudra and Fowler (Ref. 24) have rendered the double vacancy model extremely doubtful.

    Google Scholar 

  27. Using ENDOR, Jani et al. (Ref. 20) have recently determined that the strong hyperfine lines in alpha quartz are also due to interaction with a 29Si nucleus, rather than a proton.

    Google Scholar 

  28. A. V. Shendrick and D. M. Yudin, Phys. Stat. Sol. (b) 85:343 (1978).

    Article  ADS  Google Scholar 

  29. G. Gobsch, H. Haberlandt, H. J. Weckner, and J. Reinhold, Phys. Stat. Solidi 90:309 (1978).

    Article  ADS  Google Scholar 

  30. D. L. Griscom and E. J. Friebele, Phys. Rev. B24:4896 (1981).

    ADS  Google Scholar 

  31. E. J. Friebele, D. L. Griscom, M. Stapelbroek, and R. A. Weeks, Phys. Rev. Lett. 42:1346 (1979).

    Article  ADS  Google Scholar 

  32. O. A. Ershov, D. A. Goganov, and A. P. Lukirskii, Sov. Phys. Solid State 7:1903 (1966).

    Google Scholar 

  33. D. L. Griscom, J. Non-Cryst. Solids 24:155 (1977).

    Article  ADS  Google Scholar 

  34. K. L. Yip and W. B. Fowler, Phys. Rev. B10:1400 (1974).

    ADS  Google Scholar 

  35. J. A. Tossel, J. Phys. Chem. Sol. 34:307 (1973).

    Article  Google Scholar 

  36. S. J. Louisnathan and G. V. Gibbs, Am. Mineral. 57:1614 (1972).

    Google Scholar 

  37. J. A. Tossel, J. Am. Chem. Soc. 97:4840 (1975).

    Article  Google Scholar 

  38. G. A. D. Collins, D. W. Cruickshank, and A. Breeze, J. Chem. Faraday Trans. II 68:1189 (1972).

    Google Scholar 

  39. G. V. Gibbs, Amer. Mineral. 67:421 (1982).

    Google Scholar 

  40. J. M. Baker and P. T. Robinson, Sol. State Comm. 48:551 (1983).

    Article  ADS  Google Scholar 

  41. D. L. Griscom, private communication.

    Google Scholar 

  42. G. Lucovsky, Philos. Mag. B39:513 (1979)

    Google Scholar 

  43. G. Lucovsky, Philos. Mag. B39:531 (1979)

    Google Scholar 

  44. G. Lucovsky, Philos. Mag. 41:457 (1980).

    Article  Google Scholar 

  45. G. Lucovsky, J. Non-Cryst. Solids 35–36:825 (1980).

    Article  Google Scholar 

  46. E. H. Poindexter, P. J. Caplan, R. L. Pfeffer, A. H. Edwards, and W. Muller-Warmuth, Bull. Am. Phys. Soc. 29:368 (1984).

    Google Scholar 

  47. B. I. Vikhrev, N. N. Gerasimenko, and G. P. Lebedev, Soviet Physics: Microelectronics 6:71 (1977).

    Google Scholar 

  48. K. L. Brower, P. M. Lenahan, and P. V. Dressendorfer, Appl. Phys. Lett. 41:251 (1982).

    Article  ADS  Google Scholar 

  49. The heat of formation is defined in MINDO/3 as the difference between the total self consistent energy, and the sum of the isolated, single atom energies.

    Google Scholar 

  50. S. Urnes, Trans. Brit. Ceram. Soc. 60:85 (1961).

    Google Scholar 

  51. D. L. Griscom, M. Stapelbroek, and E. J. Friebele, J. Chem. Phys. 78:1638 (1983).

    Article  ADS  Google Scholar 

  52. R. Pfeffer and D. L. Griscom, to be published.

    Google Scholar 

  53. This defect has been investigated previously, using a one-electron, tight-binding technique (E. P. O’Reilly and J. Robertson, Phys. Rev. B27:3780 (1983)). However, electron-electron interactions (for the negative state) and electron lattice interactions were not included.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Edwards, A.H., Fowler, W.B. (1986). Semiempirical Molecular Orbital Studies of Intrinsic Defects in a-SiO2 . In: Walrafen, G.E., Revesz, A.G. (eds) Structure and Bonding in Noncrystalline Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9477-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9477-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9479-6

  • Online ISBN: 978-1-4615-9477-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics