Skip to main content

Structural Implications of Gas Transport in Amorphous Solids

  • Chapter
Structure and Bonding in Noncrystalline Solids

Abstract

The interstitial structure of vitreous silica and related materials is in a difficult size range for evaluation. Diffraction and spectroscopic techniques are generally limited to more local structural descriptions (bond lengths, coordination numbers, defect structures, etc.). Electron microscopy surveys somewhat larger geometry (e.g., phase separation). A careful analysis of the diffusion and solubility of inert gas atoms and molecules provides an experimental probe for interstitial structure. Such information is of substantial interest because of the basis for structural classification (in the manner of Bernal’s canonical hole model2 of liquid structure). There is also a close connection to some commercially important processes, such as the thermal oxidation of silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Shackelford, J. Non-Cryst. Solids, 42:165–174 (1980).

    Article  ADS  Google Scholar 

  2. J. D. Bernai, Proc. Roy. Soc. Lond. A, 280:299–322 (1964).

    Article  ADS  Google Scholar 

  3. J. F. Shackelford, J. Non-Cryst. Solids, 49:299–307 (1982).

    Article  ADS  Google Scholar 

  4. D. L. Griscom, “Annealing of Radiation-Induced Defect Centers in High-Purity Bulk Fused Silicas by Molecular Diffusion Mechanisms,” to be published this Proceedings.

    Google Scholar 

  5. D. B. Brown, “Annealing Radiation-Induced Damage in MOS Devices,” to be published this Proceedings.

    Google Scholar 

  6. P. Rabinzohn and F. Rochet, “New Ways of Silicon Oxidation by Low Energy Oxygen Ions and Under Electron Bombardment. Study of Growth Mechanisms and Structure,” to be published this Proceedings.

    Google Scholar 

  7. W. H. Zachariasen, J. Am. Chem. Soc., 54:3841–3851 (1932).

    Article  Google Scholar 

  8. J. F. Shackelford, P. L. Studt, and R. M. Fulrath, J. Appl. Phys., 41 [7]:2777–2780 (1970).

    ADS  Google Scholar 

  9. J. S. Masaryk and R. M. Fulrath, J. Chem. Phys. 59 [3]: 1198–1202 (1973).

    Article  ADS  Google Scholar 

  10. J. E. Shelby, in Treatise on Materials Science and Technology, Vol. 17, Glass II, Academic Press, New York, (1979).

    Google Scholar 

  11. J. F. Shackelford and J. S. Masaryk, J. Non-Cryst. Solids, 130 [2]:137–134 (1978).

    Google Scholar 

  12. J. E. Shelby, J. Appl. Phys. 47 [1]:135–139 (1976).

    Article  ADS  Google Scholar 

  13. G. Herdon, M. L. Smith, W. H. Hardwick, and P. Conner, in Small Particle Statistics, 2nd Ed., Academic Press, New York, (1960).

    Google Scholar 

  14. S. K. Kurtz and F. M. A. Carpay, J. Appl. Phys. 51 [111:5725–5744 (1980).

    Article  ADS  Google Scholar 

  15. S. K. Kurtz and Fe M. A. Carpay, J. Appl. Phys. 51 [111:5745–5754 (1980).

    Article  ADS  Google Scholar 

  16. J. S. Flores and J. F. Shackelford, “The Solubility of Argon in Vitreous Silica,” to be published in J. Non-Cryst. Solids.

    Google Scholar 

  17. A. R. Cooper, in Conf. on Boron in Glass and Glass Ceramics, L. D. Pye, V. D. Frechette, and N. J. Kreidl, eds., Plenum Press, New York, 167–181 (1978).

    Google Scholar 

  18. J. F. Shackelford and B. D. Brown, J. Non-Cryst. Solids, 44 [2/3]:379–382 (1981).

    Article  ADS  Google Scholar 

  19. R. J. Bell and P. Dean, Phil. Mag., 25:1381–1398 (1972).

    Article  ADS  Google Scholar 

  20. J. C. Phillips, “Topological Structure of Network Glasses,” to be published this Proceedings.

    Google Scholar 

  21. J. L. Finney and J. Wallace, J. Non-Cryst. Solids, 43:165–187 (1981).

    Article  ADS  Google Scholar 

  22. F. J. Norton, J. Appl. Phys. 28 [l]:34–39 (1957).

    Article  ADS  Google Scholar 

  23. J. F. Shackelford, “Gas Permeation and the Outgassing and Leak Testing of Vacuum Systems,” to be published in the Handbook of Nondestructive Testing.

    Google Scholar 

  24. N. F. Mott, Phil. Mag. A, 45 [2]:323–330 (1982).

    Article  ADS  Google Scholar 

  25. A. G. Revesz, Phys. Stat. Sol. (a), 57:235–243 (1980)

    Article  ADS  Google Scholar 

  26. A. G. Revesz, Phys. Stat. Sol. 57:657–666 (1980)

    Article  ADS  Google Scholar 

  27. A. G. Revesz, Phys. Stat. Sol. 58:107–113 (1980).

    Article  ADS  Google Scholar 

  28. S. J. Rothman, T. L. M. Marcuso, L. J. Nowieki, P. M. Baldo, and A. W. McCormick, J. Amer. Ceram. Soc, 65 [11]:578–582 (1982).

    Article  Google Scholar 

  29. P. P. Bihimiak and J. F. Shackelford, Amer. Ceram. Soc. Bull. 62 [3]:416 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Shackelford, J.F. (1986). Structural Implications of Gas Transport in Amorphous Solids. In: Walrafen, G.E., Revesz, A.G. (eds) Structure and Bonding in Noncrystalline Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9477-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9477-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9479-6

  • Online ISBN: 978-1-4615-9477-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics