Skip to main content

Applicability of the Molecular Dynamics Technique to Simulate the Vitreous Silica Surface

  • Chapter

Abstract

Vitreous silica (V-SiO2) has been of technological importance for many years in the ceramics and glass industries and, more recently, in catalysis, microelectronics, fiber optics and nuclear radiation waste containment. Because of its importance in a number of diverse areas, V-SiO2 has been the subject of a large number of experimental and theoretical studies aimed at determining the properties and structure of this material. In recent years, the molecular dynamics (MD) computer simulation technique has been used to determine the structural and dynamic properties of V-SiO2 and silicate glasses at the atomic level [1–6]. In most of these MD simulations the modified Born-Mayer-Huggins equation has been used as the form of the pairwise interatomic potential function, although other potentials have been used [6,7]. The Born-Mayer-Huggins potential, being most suited for ionic systems, has also been used in simulations of alkali halides and BeF2 [8–11]. Although V-SiO2 is about 50% covalent, the modified Born-Mayer-Huggins equation can be considered as an effective potential in stimulations of vitreous silica which reproduces a number of structural and dynamic features with surprisingly reasonable accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. V. Woodcock, C. A. Angell, and P. Cheeseman, J. Chem. Phys. 65:1565 (1976).

    Article  ADS  Google Scholar 

  2. T. F. Soules, J. Chem. Phys. 71:4570 (1979).

    Article  ADS  Google Scholar 

  3. T. F. Soules, J. Non-Crystalline Solids 49:29 (1982).

    Article  ADS  Google Scholar 

  4. S. H. Garofalini, J. Chem. Phys, 76:3139 (1982).

    Article  ADS  Google Scholar 

  5. S. H. Garofalini, J. Chem. Phys. 78:2069 (1982).

    Article  ADS  Google Scholar 

  6. S. A. Mitra, Philos. Mag. B 45:529 (1982).

    Article  Google Scholar 

  7. T. Halicioglu, personnal communication.

    Google Scholar 

  8. L. V. Woodcock, Advances in Molten State Chemistry, Vol. 3, Plenum, New York, (1975).

    Google Scholar 

  9. W. R. Busing, J. Chem. Phys. 57:3008 (1971).

    Article  ADS  Google Scholar 

  10. S. A. Brawer and M. J. Weber, J. Chem. Phys. 75:3522 (1981).

    Article  ADS  Google Scholar 

  11. M. J. L. Sangster and M. Dixon, Advances in Physics 25:247 (1976).

    Article  ADS  Google Scholar 

  12. S. A. Brawer, Phys. Rev. Lett. 46:778 (1981).

    Article  ADS  Google Scholar 

  13. R. C. McCune, Anal. Chem. 51:1249 (1980).

    Article  Google Scholar 

  14. J. F. Kelso, C. G. Patano, and S. H. Garofalini, Surf. Science 134:L543 (1983).

    Article  Google Scholar 

  15. R. S. McDonald, J. Phys. Chem. 62:1168 (1958).

    Article  Google Scholar 

  16. M. L. Hair, Infrared Spectroscopy in Surface Chemistry, Dekker, New York (1967).

    Google Scholar 

  17. J. B. Peri, J. Phys. Chem. 70:2937 (1966).

    Article  Google Scholar 

  18. R. B. Laughlin, J. D. Joannopoulos, C. A. Murray, K. J. Harnett, and T. J. Greytak, Phys. Rev. Lett. 40:461 (1978).

    Article  ADS  Google Scholar 

  19. B. M. J. Smets and M. G. W. Tholen, J. Am. Ceram. Soc. 67:281 (1984).

    Article  Google Scholar 

  20. R. H. Doremus, J. Non-Cryst. Solids, 55:142 (1983).

    Article  ADS  Google Scholar 

  21. T. A. Michalski and S. W. Freiman, Nature, 295:511 (1982).

    Article  ADS  Google Scholar 

  22. H. H. Dunken, Treatise on Materials Science and Technology, Vol. 22, Academic Press, New York (1982).

    Google Scholar 

  23. A. G. Revesz and G. V. Gibbs, The Physics of MOS Insulators, Pergamon Press, New York (1980).

    Google Scholar 

  24. S. H. Garofalini, to be published.

    Google Scholar 

  25. A. W. Wright and R. Sinclair, Physics of Silicon Oxide and Its Interfaces, Pergamon Press, Oxford (1979).

    Google Scholar 

  26. R. B. Laughlin and J. D. Joannopoulous, Phys. Rev. B. 17:4922 (1979).

    Article  ADS  Google Scholar 

  27. R. K. Iler, The Chemistry of Silica, Wiley, New York (1979).

    Google Scholar 

  28. A. Nordsieck, Math. Comput. 16:22 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. G. Lucovsky, Philos. Mag. B. 39:513 (1979).

    Article  Google Scholar 

  30. C.A. Murray and T. J. Greytak, Phys. Rev. B, 20:3368 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Garofalini, S.H. (1986). Applicability of the Molecular Dynamics Technique to Simulate the Vitreous Silica Surface. In: Walrafen, G.E., Revesz, A.G. (eds) Structure and Bonding in Noncrystalline Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9477-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9477-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9479-6

  • Online ISBN: 978-1-4615-9477-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics