Skip to main content

Two Principles of Large Artery Dilation: Indirect Endothelium-Mediated and Direct Smooth Muscle Relaxation

  • Chapter
Central and Peripheral Mechanisms of Cardiovascular Regulation

Part of the book series: NATO ASI Series ((NSSA,volume 109))

Abstract

Vasomotion of large arteries can be brought about by two different mechanisms:

  1. 1.)

    Direct effects of various agonists or transmitters on the smooth muscle cells, effecting either contractions or relaxation depending on the induced level of myoplasmic free calcium (which in turn is largely controlled by the concentration of cGMP and the activity of guanylate cyclase).

  2. 2.)

    Vasomotion can also result from indirect effects on vascular smooth muscle. Various agonists and physico-chemical stimuli act on the endothelial surface to release, via the abluminal side, a vasomotor signal to the adjacent vasculature. With regard to endothelium-mediated vasomotion, there is convincing evidence for the presence and significance of an endothelium-derived relaxant factor (EDRF). However there is much less evidence for endothelium-mediated vasoconstriction. Endothelium-mediated relaxation was first shown by Furchgott and Zawadzki in 1980, using a sandwich technique in which EDRF could diffuse from a segment with stimulated endothelium to a non-endothelium-containing indicator vessel segment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelstein, R.S., and Eisenberg, E., 1980, Regulation and kinetics of the actin-myosin-ATP interaction, Ann. Rev. Biochem., 49: 921–956.

    Article  CAS  Google Scholar 

  • Aksoy, M.O., Mras, S., Kamm, K.E., and Murphy, R.A., 1983, Ca2+, cAMP, and changes in myosin phosphorylation during contraction of smooth muscle, Am. J. Physiol., 245: C255–C270.

    CAS  Google Scholar 

  • Bachofen, M., Gage, A., and Bachofen, H., 1971, Vascular response to changes in blood oxygen tension under various blood flow rates, Am. J. Physiol., 220: 1786–1792.

    CAS  Google Scholar 

  • Bolton, T.B., 1979, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol. Rev., 59: 606–718.

    CAS  Google Scholar 

  • Bassenge, E., Holtz, J., Busse, R., and Giesler, M., 1984, Nervous coronary constriction via α-adrenoreceptors: counteracted by metabolic regulation, by coronary ß-adrenoreceptor stimulation or by flow-dependent, endothelium-mediated dilation?, In: Breakdown in Human Adaptation to “Stress”, A. L’Abbate, ed., Martinus-Nijhoff Publishers, Boston-The Hague-Dordrecht-Lancester, pp. 949–960.

    Google Scholar 

  • Busse, R. and Bassenge, E., 1984, Endothelium and hypoxic responses, Biblthca. Cardiol., 38:21–34, Karger, Basel-New York.

    Google Scholar 

  • Busse, R., Förstermann, U., Matsuda, H., and Pohl, U., 1984, The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia, Pflügers Arch., 401: 77–83.

    Article  CAS  Google Scholar 

  • Busse, R., Pohl, U., Kellner, C., and Klemm, U., 1983, Endothelial cells are involved in the vasodilatory response to hypoxia, Pflügers Arch., 397: 78–80.

    Article  CAS  Google Scholar 

  • Busse, R., Trogisch, G., and Bassenge, E., 1985, The role of endothelium in the control of vascular tone, Basic Res. Cardiol., 80: in press.

    Google Scholar 

  • Casteels, R. and Droogmans, G., 1984, Cell membrane responsiveness and excitation-contraction coupling in smooth muscle, J. Cardiovasc. Pharmacol., 6: S304–S312.

    Article  Google Scholar 

  • Chang, A.E. and Detar, R., 1980, Oxygen and vascular smooth muscle contraction revisited, Am. J. Physiol., 238: H716–H728.

    CAS  Google Scholar 

  • Droogmans, G., Raeymaekers, L., and Casteels, R., 1977, Electro- and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery, J. Gen. Physiol., 70: 129–148.

    Article  CAS  Google Scholar 

  • Fleisch, A., 1935, Les reflexes nutritifs ascendants producteurs de dilatation arterielle, Arch. Int. Physiol., 41: 141–167.

    Google Scholar 

  • Frangos, J.A., Eskin, S.G., Mclntire, L.V., and Ives, C.L., 1985, Flow effects on prostacyclin production by cultured human endothelial cells, Science, 227: 1477–1479.

    Article  CAS  Google Scholar 

  • Franke, R.-P., Gräfe, M., Schnittler, H., Seiffge, D., Mittermayer, C., and Drenckhahn, D., 1984, Induction of human vascular endothelial stress fibres by fluid shear stress, Nature, 307: 648–649.

    Article  CAS  Google Scholar 

  • Funk, W. and Intaglietta, M., 1983, Spontaneous arteriolar vasomotion, in: Vasomotion and Quantitative Capillaroscopy, Messmer, Hammersen, eds., Karger, Basel, pp. 66–82.

    Google Scholar 

  • Furchgott, R.F., 1983, Role of endothelium in responses of vascular smooth muscle, Circ. Res., 53: 557–573.

    CAS  Google Scholar 

  • Furchgott, R.F. and Zawadzki, J.V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, 288: 373–376.

    Article  CAS  Google Scholar 

  • Gerova, M., Gero, J., Barta, E., Dolezel, S., Smiesko, V., and Levicky, V., 1981, Neurogenic and myogenic control of conduit coronary artery: A possible interference, Basic Res. Cardiol., 76: 503–507.

    Article  CAS  Google Scholar 

  • Grabowski, E.F., Jaffe, E.A., and Weksler, B.B., 1985, Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress, J. Lab. Clin. Med., 105: 36–43.

    CAS  Google Scholar 

  • Griffith, T.M., Hughes Edwards, D., Lewis, M.J., Newby, A.C., and Henderson, A.H., 1984, The nature of endothelium-derived vascular relaxant factor, Nature, 308: 645–647.

    Article  CAS  Google Scholar 

  • Hardman, J.G., 1984, Cyclic nucleotides and regulation of vascular smooth muscle, J. Cardiovasc. Pharmacol., 6: S639–S645.

    Article  Google Scholar 

  • Hartshorne, D.J. and Mrwa, U., 1982, Regulation of smooth muscle actomyocin, Blood Vessels, 19: 1–18.

    CAS  Google Scholar 

  • Hilton, S.M., 1959, A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilatation in skeletal muscle, Physiol. (London), 149: 93–111.

    CAS  Google Scholar 

  • Hintze, T.H. and Vatner, S.F., 1984, Reactive dilation of large coronary arteries in conscious dogs, Circ. Res., 54: 50–57.

    CAS  Google Scholar 

  • Holtz, J., Busse, R., and Giesler, M., 1983a, Flow-dependent dilation of canine epicardial coronary arteries in vivo and in vitro: Mediated by the endothelium, Naunyn-Schmid. Arch. Pharmacol., 322: R44.

    Google Scholar 

  • Holtz, J., Forstermann, U., Pohl, U., Giesler, M., and Bassenge, E., 1984, Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: Effects of cyclooxygenase inhibition, J. Cardiovasc. Pharmacol., 6: 1161–1169.

    CAS  Google Scholar 

  • Holtz, J., Giesler, M., and Bassenge, E., 1983b, Two dilatory mechanisms of anti-anginal drugs onepicardial coronary arteries in vivo: indirect, flow-dependent, endothelium-mediated and direct smooth muscle relaxation, Z. Kardiol., 72, Suppl. 3, 98–106.

    Google Scholar 

  • Ignarro, L.J. and Kadowitz, P.J., 1985, The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation, Ann. Rev. Pharmacol. Toxicol., 25: 171–191.

    Article  CAS  Google Scholar 

  • Jackson, W.F. and Duling, B.R., 1983, The oxygen sensitivity of hamster cheek pouch arterioles: In vitro and in situ studies, Circ. Res., 53: 515–525.

    CAS  Google Scholar 

  • Kamiya, A. and Togawa, T., 1980, Adaptive regulation of wall shear stress to flow change in the canine carotid artery, Am. J. Physiol., 239: H14–H21.

    CAS  Google Scholar 

  • Lie, M., Sejersted, O.M., and Kiil, F., 1970, Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs, Circ. Res., 27: 727–737.

    CAS  Google Scholar 

  • Lincoln, T.M. and Corbin, J.D., 1978, On the role of the cAMP and cGMP-dependent protein kinases in cell function, J. Cycl. Nucl. Res., 4: 3–14.

    CAS  Google Scholar 

  • Morgan, J.P. and Morgan, K.G., 1984, Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein, J. Physiol., 351: 155–167.

    CAS  Google Scholar 

  • Pittman, R.N. and Duling, B.R., 1973, Oxygen sensitivity in vascular smooth muscle. I. In vitro studies, Microvase. Res., 6: 202–211.

    Google Scholar 

  • Pohl, U., Busse, R., and Bassenge, E., 1985a, Endothelium-dependent hypoxic vasodilation: endothelium derived relaxant factor (EDRF) as mediator? Circulation, 72, II

    Google Scholar 

  • Pohl, U., Busse, R., and Kessler, M., 1982, Vascular resistance and tissue pO2 in skeletal muscle during perfusion with hypoxic blood, in: Cardiovascular System Dynamics, T. Kenner, R. Busse, eds., Plenum Press, New York and London, pp. 521–530.

    Google Scholar 

  • Pohl, U., Förstermann, U., Busse, R., and Bassenge, E., 1985b, Endothelium-mediated modulation of arterial smooth muscle tone and PGI2-release: Pulsatile versus steady flow. In: “Prostaglandins and Other Eicosanoids in the Cardiovascular System”, K. Schror, (Ed.), 553–558, Karger, Basel.

    Google Scholar 

  • Pohl, U., Holtz, J., Busse, R., and Bassenge, E., 1984, Dilation of large arteries in response to increased flow in vivo: an endothelium- dependent reaction, Circulation, 70: 11–123.

    Google Scholar 

  • Pohl, U., Holtz, J., Busse, R., and Bassenge, E., 1986, Crucial role of endothelium in the vasodilator response to increased flow in vivo, Hypertension, 8: 33–41.

    Google Scholar 

  • Quadt, J.F.A., Voss, R., and Hoor, F.T., 1982, Prostacyclin production of the isolated pulsatingly perfused rat aorta, J. Pharmacol. Methods, 7: 263–270.

    Article  CAS  Google Scholar 

  • Rodbard, S., 1975, Vascular caliber, Cardiology, 60: 4–49.

    Article  CAS  Google Scholar 

  • Ruegg, J.C. and Paul, R.J., 1982, Vascular smooth muscle: Calmodulin and cyclin AMP-dependent protein kinase alter calcium sensitivity in porcine carotid skinned fibers, Circ. Res., 50: 394–399.

    CAS  Google Scholar 

  • Schretzenmayr, A., 1933, Uber kreislaufregulatorische Vorgange an den gro Ben Arterien bei der Muskelarbeit, Pflügers Arch. Ges. Physiol., 232: 743–748.

    Article  Google Scholar 

  • Shepherd, J.T., 1985, Circulation to skeletal muscle, in: Handbook of Physiology, Sect. 2, Vol. III, Pt. 1, J.H. Shepherd, F.M. Abboud, eds., Am. Physiol. Soc., Bethesda, pp. 319–370.

    Google Scholar 

  • Smiesko, V. and Kozik, J., 1980, Dilation response of a small artery of muscular type to increased blood flow, Bratisl. Lek. Listy 73: 727–733.

    CAS  Google Scholar 

  • Smiesko, V.,Kozik, J., and Dolezel, S., 1985, Role of endothelium in the control of arterial diameter by blood flow, Blood Vessels, in press.

    Google Scholar 

  • Sparks, H.V. Jr., 1980, Effect of local metabolic factors on smooth muscle, in: Handbook of Physiology, Sect. 2, Vol. II, D.F. Bohr, A. P. Somlyo, H.V. Sparks, Jr., eds., Am. Physiol. Soc., Bethesda, pp. 475–513.

    Google Scholar 

  • Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I., 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature, 306: 67–69.

    Article  CAS  Google Scholar 

  • Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5 -triphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery, Biochem. Biophys. Res. Comm., 120: 481–485.

    Article  CAS  Google Scholar 

  • van Grondelle, A. van, Worthen, G.S., Ellis, D., Mathias, M.M., Murphy, R.C., Strife, R.J., Reeves, J.T., and Volkel, N.F., 1984, Altering hydrodynamic variables influences PGI2 production by isolated lungs and endothelial cells, J. Appl. Physiol. Respirant Environ. Exercise Physiol., 57: 388–395.

    Google Scholar 

  • Vanhoutte, P.M. and Rimele, T.J., 1983, Role of the endothelium in the control of vascular smooth muscle function, J. Physiol. (Paris), 78: 681–686.

    CAS  Google Scholar 

  • Weiss, B., Prozialeck, W.C., and Wallace, T.L., 1982, Interaction of drugs with calmodulin: Biochemical, pharmacological and clinical implications, Biochem. Pharmacol., 31: 2217–2226.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Bassenge, E., Pohl, U. (1986). Two Principles of Large Artery Dilation: Indirect Endothelium-Mediated and Direct Smooth Muscle Relaxation. In: Magro, A., Osswald, W., Reis, D., Vanhoutte, P. (eds) Central and Peripheral Mechanisms of Cardiovascular Regulation. NATO ASI Series, vol 109. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9471-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9471-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9473-4

  • Online ISBN: 978-1-4615-9471-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics