Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 109))

Abstract

The hemodynamic characteristics of the vasculature are determined primarily by the vascular characteristic impedance, flow resistance, and wall stiffness. The first is of most importance in the larger Windkessel vessels and determines the pulse pressure for a given oscillatory flow. The second concerns primarily the vessels responsible for flow distribution (the small arteries and arterioles) and gives the steady flow maintained by a given perfusion pressure. The third is of importance as regards the capacitance vessels (the small veins) as well as the vessels which determine the venous return pressure (the large veins) and gives the change in transmural pressure for a given change in vascular volume. These characteristics are functions of the vessel caliber and the elastic modulus of the vascular wall (McDonald, 1974; Dobrin, 1978; Caro et al., 1978; Gow, 1980; Mulvany, 1984b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalkjaer, C. and Mulvany, M.J., 1985, Effect of ouabain on tone, membrane potential and sodium efflux compared with 3H-ouabain binding in rat resistance vessels, J. Physiol., 362: 215–231.

    CAS  Google Scholar 

  • Aalkjaer C., Mulvany, M.J. and Nyborg, N., 1985, Atrial natriuretic factor causes specific relaxation of rat renal arcuate arteries, Br. J. Pharmacol., In Press.

    Google Scholar 

  • Adams, R.J., Wallick, E.T., Asno, G., Disalvo, J., Fondacaro,J.D. and Jacobsen, E.D., 1983, Canine mesentery artery Na+, K+-ATPase: Vasopressor receptor for digitalis?, J. Cardiovasc. Pharmacol., 5: 468–482.

    Article  CAS  Google Scholar 

  • Ashton, F.T., Somlyo, A.V. and Somlyo, A.P., 1975, The contractile apparatus of vascular smooth muscle: Intermediate high voltage stereo electron microscopy, J. Molec. Biol. 98: 17–29.

    Article  CAS  Google Scholar 

  • Baandrup, U., Gundersen, H.J.G. and Mulvany, M.J., 1985, Is it possible to solve the problem: Hypertrophy/hyperplasia of smooth muscle in the vessel wall of hypertensive subjects? Adv. Appl. Microcirc., 8: 122–128.

    Google Scholar 

  • Bayliss, W.M., 1902, On the local reactions of the arterial wall to changes of internal pressure, J. Physiol., 28: 220–231.

    CAS  Google Scholar 

  • Benedict, J.V., Walker, L.B. and Harris, E.H., 1968, Stress-strain characteristics and tensile strength of unembalmed human tendon, J. Biochem., 1: 53–63.

    CAS  Google Scholar 

  • Benham, C.D., Bolton, T.B., Lang, R.J. and Takewaki, T., 1985, The mechanism of action of barium and TEA on single calcium-activated potassium channels in arterial and intestinal smooth muscle cell membranes, Pflugers Archiv., 403: 120–127.

    Article  CAS  Google Scholar 

  • Berner, P.F., Somlyo, A.V., Somlyo, A.P., 1981, Hypertrophy-induced increase of intermediate filaments in vascular smooth muscle, Cell Biol., 88: 96–101.

    Article  CAS  Google Scholar 

  • Bevan, J.A. and Verity, M.A., 1967, Sympathetic nerve-free vascular muscle. J. Pharmacol. Exp. Therap., 157: 117–124.

    Google Scholar 

  • Bevan, R.D. and Tsuru, H., 1981, Functional and structural changes in the rabbit ear artery after sympathetic denervation. Circ. Res., 49: 478–485.

    CAS  Google Scholar 

  • Blaustein, M.P., 1977, Sodium ions, calcium ions, blood pressure regulation and hypertension: A reassessment and a hypothesis, Am. J. Physiol., 232: C165–C173.

    CAS  Google Scholar 

  • Bolton, T.B., 1979, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol. Rev., 59: 606–718.

    CAS  Google Scholar 

  • Bond, M., Kitazawa, T., Somlyo, A.P. and Somlyo, A.V., 1984, Release and recycling of calcium by the sarcoplasmic reticulum in guinea-pig portal vein smooth muscle, J. Physiol., 355: 677–695.

    CAS  Google Scholar 

  • Bukoski, R.D., Seidel, C.L. and Allen, J.C., 1983, Ouabain binding, Na+-K+-ATPase activity and 86Rb uptake of canine arteries, Am. J. Physiol., 245: H604–H609.

    CAS  Google Scholar 

  • Burnstock, G., Griffith, S.G. and Sneddon, P., 1984, Autonomic nerves in the precapillary vessel wall, J. Cardiovasc. Pharmacol., 6 (Suppl. 2): S344–S353.

    Article  Google Scholar 

  • Canfield, S.P., 1971, The mechanical properties and heat production of chicken latissimus dorsi muscles during tetanic contractions, Physiol., 219: 281–302.

    CAS  Google Scholar 

  • Canham, P.B. and Mullin, K., 1978, Orientation of medial smooth muscle in the wall of systemic muscular arteries, J. Microscopy, 114: 307–318.

    Article  CAS  Google Scholar 

  • Caro, C.G., Pedley, T.J., Schroter, R.C. and Seed, W.A., 1978, The mechanics of the circulation, Oxford University Press, Oxford: pp. 1–527.

    Google Scholar 

  • Carton, R.W., Dainauskas, J. and Clark, J.W., 1962, Elastic properties of single fibres, J. Appl. Physiol., 17: 547–551.

    CAS  Google Scholar 

  • Chamley-Campbell, J., Campbell, G.R. and Ross, R., 1979, Smooth muscle cell in culture, Physiol. Rev., 59: 1–61.

    CAS  Google Scholar 

  • Close, R.I., 1972, Dynamic properties of mammalian skeletal muscle, Physiol. Rev., 52: 129–197.

    CAS  Google Scholar 

  • Cocks, T.M. and Angus, J.A., 1983, Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotinin, Nature, 305: 627–629.

    Article  CAS  Google Scholar 

  • Cox, R.H., 1978, Passive mechanics and connective tissue composition of canine arteries, Am. J. Physiol., 234: H533–H541.

    CAS  Google Scholar 

  • Craig, R. and Mergerman, J., 1977, Assembly of smooth muscle myosin into side-polar filaments. J. Cell. Biol., 75: 990–996.

    Article  CAS  Google Scholar 

  • Crissman, R.S., 1984, The three-dimensional configuration of the elastic fiber network in canine saphenous vein, Blood Vessels, 21: 156–170.

    CAS  Google Scholar 

  • Deleze, J.B., 1961, The mechanical properties of the semitendinosus muscle at lengths greater than its length in the body, J. Physiol., 158: 154–164.

    CAS  Google Scholar 

  • Devine, C.E., Somlyo, A.V. and Somlyo, A.P., 1972, Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscle, J. Cell. Biol., 52: 690–718.

    Article  CAS  Google Scholar 

  • Dobrin, P.B., 1978, Mechanical properties of arteries, Physiol. Rev., 58: 397–460.

    Google Scholar 

  • Droogmans, G. and Casteels, R., 1979, Sodium and calcium interactions in vascular smooth muscle cells of the rabbit ear artery, J. Gen. Physiol., 74: 57–70.

    Article  CAS  Google Scholar 

  • Droogmans, G., Raeymakers, L. and Casteels, R., 1977, electro- and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery, J. Gen. Physiol., 70: 129–148.

    Google Scholar 

  • Duling, B.R., Gore, R.W., Dacey, R.G. and Damon, D.N., 1981, Methods for isolation, cannulation and in vitro study of single microvessels, Am. J. Physiol., 241: H108–H116.

    CAS  Google Scholar 

  • Fay, F.S., 1975, Mechanical properties of single isolated smooth muscle cells, INSERM, 50: 327–342.

    Google Scholar 

  • Fay, F.S., Fogarty, K. and Fujiwara, K., 1984, The organization of the contractile apparatus in single isolated smooth muscle cells, in: “Smooth Muscle Contraction,” N.L. Stephens (ed.), Fay, F.S., Fogarty, K. and Fujiwara, K., pp. 75–90, New York.

    Google Scholar 

  • Forbes, M.S., Rennels, M.L., and Nelson, E., 1979, Caveolar system and sarcoplasmic reticulum in coronary smooth muscle cells, Ultrastruct. Res., 67: 325–339.

    Article  CAS  Google Scholar 

  • Friedman, S.M. and Friedman, C.L., 1976, Cell permeability sodium transport and the hypertensive process in the rat, Circ. Res., 39: 433–440.

    CAS  Google Scholar 

  • Furchgott, R.F. and Zawadzki, J.V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetycholine, Nature, 288: 373–376.

    Article  CAS  Google Scholar 

  • Gabbiani, G. and Majno, G., 1977, Fine structure of the endothelium. in: “Microcirculation”, G. Kaley, and B.M. Altura, (eds.), pp. 133–144, Univ. Park, Baltimore.

    Google Scholar 

  • Gabella, G., 1976, Quantitative morphological study of smooth muscle cells of the guinea-pig taenia coli, Cell Tissue Res., 170: 161–186.

    CAS  Google Scholar 

  • Gabella, G., 1981, Structure of smooth muscles, in: “Smooth Muscle; An Assessment of Current Knowledge,” Bulbring, E., et al. (eds.), pp. 1–46, Arnold, London.

    Google Scholar 

  • Gabella, G., 1984a, Structural apparatus for force transmission in smooth muscles, Physiol. Rev., 64: 455–477.

    CAS  Google Scholar 

  • Gabella, G., 1984b, Smooth muscle cell membrane and allied structures. in: “Smooth Muscle Contraction,” N.L. Stephens, (ed.), pp. 21–46, Marcel Dekker, New York.

    Google Scholar 

  • Gabella, G. and Blundell, D., 1978, Effect of stretch and contraction on caveoli of smooth muscle cells, Cell Tissue Res., 190: 255–271.

    Article  CAS  Google Scholar 

  • Gordon, A.M., Huxley, A.F. and Julian, F.J., 1966, The variation in isometric tension with sarcomere length in vertebrate muscle fibres, J. Physiol., 184: 170–192.

    CAS  Google Scholar 

  • Gow, B.S., 1980, Circulatory correlates: vascular impedance, resistance and capacity, in: Handbook of Physiology, Section 2, Volume 2, Vascular Smooth Muscle, D.F. Bohr, A.P. Somlyo, H.V. Sparks, (eds.), pp. 353–408, American Physiological Society, Bethesda.

    Google Scholar 

  • Greenwald, S.E. and Berry, C.L., 1978, Static mechanical properties and chemial composition of the aorta of spontaneously hypertensive rats: A comparison with the effects of induced hypertension, Cardiovasc. Res., 12: 364–372.

    Article  CAS  Google Scholar 

  • Halpern, W., Osol, G. and Coy, G.S., 1984, Mechanical behaviour of pressurized in vitro prearteriolar vessels determined with a video-system, Annals Biomed. Eng., In Press.

    Google Scholar 

  • Harder, D.R., 1984, Pressure-dependent membrane depolarization in cat middle cerebral artery, Circ. Res., 55: 197–202.

    CAS  Google Scholar 

  • Harder, D.R. and Sperelakis, N., 1978, Action potentials induced in guinea pig arterial smooth muscle by tetraethylammonium, Am. J. Physiol., 237: C75–C80.

    Google Scholar 

  • Hartshorne, D.J. and Mrwa, U., 1982, Regulation of smooth muscle actomyosin, Blood Vessels, 19: 1–18.

    CAS  Google Scholar 

  • Hellstrand, P. and Arner, A., 1980, Contraction of the rat portal vein in hypertonic and isotonic medium: Mechanical properties and effects of magnesium, Acta Physiol. Scand., 110: 59–69.

    Article  CAS  Google Scholar 

  • Herlihy, J.T. and Murphy, R.A., 1974, Force-velocity and series elastic characteristics of smooth muscle from hog carotid artery, Circ. Res., 34: 461–466.

    CAS  Google Scholar 

  • Hermsmeyer, K., 1983, Sodium pump hyperpolarization-relaxation in rat caudal artery, Fedn. Proc., 42: 246–252.

    CAS  Google Scholar 

  • Hirst, G.D.S. and Neild, T.O., 1978, An analysis of excitatory junction potentials recorded from arterioles, J. Physiol., 280: 87–104.

    CAS  Google Scholar 

  • Hirst, G.D.S. and van Helden, D.F., 1982, Ionic basis of the resting potential of submucosal arterioles in the ileum of the guinea-pig, J. Physiol., 333: 53–67.

    CAS  Google Scholar 

  • Huxley, A.F., 1974, Muscular contraction, J. Physiol., 243: 1–44.

    CAS  Google Scholar 

  • Johansson, B., Hellstrand, P. and Uvelius, B., 1978, Responses of smooth muscle to quick load change at high time resolution, Blood Vessels, 15: 65–82.

    CAS  Google Scholar 

  • Johnson, P.C., 1980, The myogenic response in: Handbook of Physiology, Section 2, Volume 2, Vascular Smooth Muscle, D.F. Bohr, A.P. Somlyo, H.V. Sparks, (eds.), PP. 475–514, American Physiological Society, Bethesda.

    Google Scholar 

  • Kanbe, T., Nara, Y., Tagami, M. and Yamori, Y., 1983, Studies on hypertension-induced vascular hypertrophy in cultured smooth muscle cells from spontaneously hypertensive rats, Hypertension, 5: 887–892.

    CAS  Google Scholar 

  • Kramer, G.L. and Hardman, J.G., 1980, Cyclic nucleotides and blood vessel contraction In: Handbook of Physiology, Section 2, Volume 2, Vascular Smooth Muscle, D.G.Bohr, A.P. Somlyo, H.V. Sparks, (eds.), pp. 179–200, American Physiological Society, Bethesda.

    Google Scholar 

  • Kwan, C.Y., Triggle, C.R., Grover, A.K., Lee, R.M.K.W., Daniel, E.E., 1983, An analytical approach to the preparation and characterization of subcellular membranes from canine mesenteric arteries, Preparative Biochem., 13: 275–314.

    Article  CAS  Google Scholar 

  • Litwin, W.J., 1980, Cell membrane features of rabbit arterial smooth muscle, Cell Tissue Res., 212: 341–350.

    Article  CAS  Google Scholar 

  • Lowy, J., Poulsen, F.R. and Viebert, P.J., 1970, Myosin filaments in vertebrate smooth muscle, Nature, 225: 1053–1054.

    Article  CAS  Google Scholar 

  • McDonald, D.A., 1974, Blood Flow in Arteries, London; Arnold, pp. 1–496.

    Google Scholar 

  • Marston, S.B. and Taylor, E.W., 1980, Comparison of the myosin and actomysin ATPase mechanisms of the four types of vertebrate muscles, J. Molec. Biol., 139: 573–600.

    Article  CAS  Google Scholar 

  • Morgan, J.P. and Morgan, K.G., 1984, Stimulus specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein, J. Physiol., 351: 155–167.

    CAS  Google Scholar 

  • Mulvany, M.J., 1979, The undamped and damped series elastic components of a vascular smooth muscle, Biophys. J., 26: 401–413.

    Article  CAS  Google Scholar 

  • Mulvany, M.J., 1984a, Crossbridges in smooth muscle, in: “Smooth Muscle Contraction,” N.L. Stephens, (ed.), Mulvany, M.J., pp. 145–150, New York.

    Google Scholar 

  • Mulvany, M.J., 1984b, Determinants of vascular hemodynamic characteristics, Hypertension 6 (Suppl. 3):III-13-111–18.

    Google Scholar 

  • Mulvany, M.J., 1984c, Pathophysiology of vascular smooth muscle in hypertension, J. Hypertension 2 (Suppl. 3): 413–420.

    Google Scholar 

  • Mulvany, M.J., Aalkjaer, C. and Petersen, T.T., 1984, Intracellular sodium, membrane potential and contractility in rat mesenteric small arteries, Circ. Res., 54: 740–749.

    CAS  Google Scholar 

  • Mulvany, M.J., Ljung, B., Stoltze, M. and Kjellstedt, A., 1980, Contractile and morphological properties of the portal vein in spontaneously hypertensive and Wistar-Kyoto rats, Blood Vessels, 17: 202–215.

    CAS  Google Scholar 

  • Mulvariy, M.J., Nilsson, H. and Flatman, J.A., 1982a, Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation, J. Physiol, 332: 363–373.

    Google Scholar 

  • Mulvany, M.J,, Nilsson, H., Flatman, J.A., Korsgaard, N., 1982b, Potentiating and depressive effects of ouabain and potassium-free solutions on rat mesenteric resistance vessels, Circ. Res., 51: 514–524.

    Google Scholar 

  • Mulvany, M.J. and Warshaw, D.M., 1979, The active tension-length curve of vascular smooth muscle related to its cellular components. J. Gen. Physiol., 74: 85–104.

    Article  CAS  Google Scholar 

  • Mulvany, M.J. and Warshaw, D.M., 1981, The anatomic location of the series elastic component in rat vascular smooth muscle, J. Physiol., 314: 321–330.

    CAS  Google Scholar 

  • Murphy, R.A., Herlihy, J.T. and Mergerman, J., 1974, Force-generating capacity and contractile protein content of arterial smooth muscle, J. Gen. Physiol., 64: 691–705.

    Article  CAS  Google Scholar 

  • Nilsson, H., Ljung, B., Sjoblom, N. and Wallin, B.G., 1985, The influence of the sympathetic impulse pattern on contractile responses of rat mesenteric arteries and veins, Acta Physiol. Scand., 123: 303–309.

    Article  CAS  Google Scholar 

  • Overbeck, H.W., 1980, Pressure-independent increases in vascular resistance in hypertension: Role of sympathoadrenergic influences, Hypertension 2: 780–786.

    CAS  Google Scholar 

  • Paul, R.J., Gluck, E. and Ruegg, J.C., 1976, Crossbridge ATP utilization in arterial smooth muscle, Pflugers Archiv., 361: 297–300.

    Article  CAS  Google Scholar 

  • Prescott, L. and Brightman, M.W., 1976, The sarcolemma of Aplaysia smooth muscle in freeze-fracture preparations, Tissue and Cell, 8: 241–258.

    Article  CAS  Google Scholar 

  • Rhodin, J.A.G., 1980, Architecture of the vessel wall, in: Handbook of Physiology, Section 2, Volume 2, Vascular Smooth Muscle, D.F. Bohr, A.P. Somlyo, H.V. Sparks, (eds.), pp. 1–31, American Physioloical Society, Bethesda.

    Google Scholar 

  • Rowan, R.A. and Bevan, J.A., 1983, Distribution of adrenergic synaptic cleft width in vascular and non-vascular smooth muscle, in: “Vascular Neuroeffector Mechanisms,” J.A. Bevan, et al. (eds.), pp. 75–83, Raven Press, New York.

    Google Scholar 

  • Ruegg, J.C. and Paul, R.J., 1982, Vascular smooth muscle, calmodulin and cyclic AMP-dependent protein kinase alter calcium sensitivity in porcine carotid skinned fibres, Circ. Res., 50: 394–399.

    CAS  Google Scholar 

  • Ruegg, J.C., Sparrow, M.P., Mrwa, U., Schneider, M. and Pfitzer, G., 1984, Calcium and calmodulin dependent regulatory mechanisms in chemically skinned smooth muscle, in: “Smooth Muscle Contraction,” N.L. Stephens, (ed.), Ruegg, J.C., Sparrow, M.P., Mrwa, U., Schneider, M. and Pfitzer, G., pp. 361–372, New York.

    Google Scholar 

  • Schwartz, S.M. and Ross, R., 1984, Cellular proliferation in atherosclerosis and hypertension, Prog. Cardiovasc. Diseases, 26: 355–372.

    Article  CAS  Google Scholar 

  • Shoenberg, C.F. and Haselgrove, J.C., 1974, Filaments and ribbons in vertebrate smooth muscle, Nature, 249: 152–154.

    Article  CAS  Google Scholar 

  • Singer, J.J. and Walsh, J.V., 1984, Large conductance calcium-activated potassium channels in smooth muscle membrane. Biophys. J., 45: 68–70.

    Article  CAS  Google Scholar 

  • Small, J.V. and Squire, J.M., 1972, Structural basis of contraction in vertebrate smooth muscle, J. Molec. Biol., 67: 117–149.

    Article  CAS  Google Scholar 

  • Sobieszek, A., 1977, Vertebrate smooth muscle myosin: Enzymatic and structural properties, in: “The Biochemistry of Smooth Muscle,” N.L. Stephens (ed.), pp. 413–443, Univ. Park, Baltimore.

    Google Scholar 

  • Somlyo, A.P., 1978, The role of organelles in regulating cytoplasmic calcium in vascular smooth muscle, in: “Mechanisms of Vasodilatation,” P.M. Vanhoutte, and I. Leusen, (eds.), pp. 21–29, Karger, Basel.

    Google Scholar 

  • Somlyo, A.P., Devine, C.E., Somlyo, A.V. and Rice, R.V., 1973, Filament organization in vertebrate smooth muscle, Phil. Trans. Roy. Soc. Lond. B, 265: 223–229.

    Article  CAS  Google Scholar 

  • Somlyo, A.P., Somlyo, A.V. and Shuman, H., 1979, Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei and cytoplasm, J. Cell. Biol., 81: 316–335.

    Article  CAS  Google Scholar 

  • Su, C.M., Swamy, V.C. and Triggle, D.J., 1984, Calcium channel activation in vascular smooth muscle by Bay K 8644, Can. J. Physiol. Pharmacol., 62, 1401–1410.

    Article  CAS  Google Scholar 

  • Thoren, P. and Ricksten, S.E., 1979, Recordings of renal and splanchnic sympathetic nervous activity in normotensive and spontaneously hypertensive rats, Clin. Sci., 57: 197s–199s.

    Google Scholar 

  • Todd, M.E., Laye, C.G. and Osborne, D.N., 1983, Dimensional characteristics of smooth muscle in rat blood vessels: A computer-assisted analysis, Circ. Res., 53: 319–331.

    CAS  Google Scholar 

  • Uvelius, B., Arner, A. and Johansson, B., 1981, Structural and mechanical alteration in hypertrophic venous smooth muscle, Acta Physiol. Scand., 112: 463–471.

    Article  CAS  Google Scholar 

  • Van Dijk, A.M., Wieringa, P.A., Van Meer, M. and Laird, J.D., 1984, Mechanics of resting isolated single vascular smooth muscle cells from bovine coronary artery, Am. J. Physiol., 246: C277–C287.

    Google Scholar 

  • Vanhoutte, P.M., 1980, Physical factors of regulation in: Handbook of Physiology, Section 2, Volume 2, Vascular Smooth Muscle, D.F. Bohr, A.P. Somlyo, H.V. Sparks, (eds.), pp. 443–4745, Amerian Physiological Society, Bethesda.

    Google Scholar 

  • Vibert, P.J., Haselgrove, J.C., Lowy, J. and Poulsen, F.R., 1972, Structural changes in act in-containing filaments of muscle, Molec. Biol., 71: 757–767.

    Article  CAS  Google Scholar 

  • Walmsley, J.G., Gore, R.W., Dacey, R.G., Damon, D.N. and Duling, B.R., 1982, Quantitative morphology of arterioles from the hamster cheek pouch related to mechanical analysis, Microvasc. Res., 24: 249–71.

    Article  CAS  Google Scholar 

  • Walsh, J.V. and Singer, J.J., 1980, Calcium action potentials in single freshly isolated smooth muscle cells, Am. J. Physiol., 239: C162–C174.

    CAS  Google Scholar 

  • Warshaw, D.M. and Fay, F.S., 1983, Crossbridge elasticity in single smooth muscle cells, J. Gen. Physiol., 82: 157–199.

    Article  CAS  Google Scholar 

  • Warshaw, D.M., Mulvany, M.J. and Halpern, W., 1979, Mechanical and morphological properties of arterial resistance vessels in young and old spontaneously hypertensive rats, Circ. Res., 45: 250–259.

    CAS  Google Scholar 

  • Webb, R.C. and Bohr, D.F., 1978, Potassium-induced relaxation as an indicator of Na+-K+-ATPase activity in vascular smooth muscle, Blood Vessels, 15: 198–207.

    CAS  Google Scholar 

  • Wei, J.W., Janis, R.A. and Daniel, E.E., 1976, Studies on subcellular fractions from mesenteric arteries of spontaneously hypertensive rats: Alterations in both calcium uptake and enzyme activities, Blood Vessels, 13: 293–308.

    CAS  Google Scholar 

  • Wuytack, F., Raeymakers, L., De Schutter, G. and Casteels, R., 1982, Demonstration of the phosphorylated intermediates of the Ca2+ -transport ATPase in a microsomal fraction and in a (Ca +2+ Mg+2)-ATPase purified from smooth muscle by means of a calmodulin affinity chromatography, Biochim. Biophys. Acta, 693: 45–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Mulvany, M.J. (1986). Vascular Smooth Muscle: Structure and Function. In: Magro, A., Osswald, W., Reis, D., Vanhoutte, P. (eds) Central and Peripheral Mechanisms of Cardiovascular Regulation. NATO ASI Series, vol 109. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9471-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9471-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9473-4

  • Online ISBN: 978-1-4615-9471-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics