Skip to main content

Mechanisms Involved in the Actions of Stimulant Drugs on Vascular Smooth Muscle

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 109))

Abstract

Smooth muscle tissues in the mammalian body carry out a wide variety of physiological functions. In each organ the smooth muscle is organized to provide tension development, or relaxation of existing tension, in response to varied stimuli reaching it from both local and distant parts of the body. The stimuli which reach it are of two main types — blood borne or local hormones and neurotransmitter substances. The smooth muscle in a particular organ is generally endowed with a wide variety of receptors which can recognize and respond to these hormones and neurotransmitters. The complement of receptors possessed by a particular smooth muscle to a large extent determine its responsiveness to chemical signals from other cells of the body. A second important factor in determining this responsiveness is the type of electromechanical coupling exhibited by the constituent smooth muscles of the tissue. In different tissues this takes a bewildering variety of forms. However, a simple and important division is between those smooth muscle cells which readily generate and propagate action potentials and those which do not. Where action potentials occur in smooth muscle cells they are the main determinant of tension generation by smooth muscle tissues — although not necessarily the only one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allcorn, R. J., Cunnane, T. C., Muir, T. C., and Wardle, K. A., 1985, Does contraction in the rabbit ear artery require excitatory junction potentials (e.j.p.s.) and ‘spikes’?, J. Physiol., In Press.

    Google Scholar 

  • Benham, C. D., and Bolton, T. B., 1983, Patch-clamp studies of slow potential-sensitive potassium channels in longitudinal smooth muscle cells of rabbit jejunum, J. Physiol., 340: 469–486.

    CAS  Google Scholar 

  • Benham, C. D., Bolton, T. B., and Lang, R. J., 1984, Membrane potential and voltage-clamp recording from single smooth muscle cells of rabbit jejunum, J. Physiol., 353: 67

    Google Scholar 

  • P. Benham, C. D., Bolton, T. B., and Lang, R. J., 1985, The action of acetylcholine on single cells of longitudinal smooth muscle of rabbit jejunum studied by whole-cell voltage-clamp, J. Physiol., 358: 84 P.

    Google Scholar 

  • Benham, C. D., Bolton, T. B., Lang, R. J., and Takewaki, T., 1984, Calcium-dependent K+ channels in dispersed intestinal and arterial smooth muscle cells of guinea-pig and rabbits studied by the patch-clamp technqiue, J. Physiol., 350: 51 P.

    Google Scholar 

  • Bevan, J. A., and Bevan, R. D., 1984, Patterns of α-adrenoceptor regulation of the vasculature, Blood Vessels, 21: 110–116.

    CAS  Google Scholar 

  • Bolton, T. B., 1979, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol. Rev., 59: 606–718.

    CAS  Google Scholar 

  • Bolton, T. B., Lang, R. J., and Takewaki, T., 1984, Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery, J. Physiol. 351: 549–572.

    CAS  Google Scholar 

  • Bolton, T. B., and Clapp, L. H., 1984, The diverse effects of noradrenaline and other stimulants on 86Rb and 42K efflux in rabbit and guinea-pig arterial muscle, J. Physiol. 355: 43–63.

    CAS  Google Scholar 

  • Bond, M., Kitazawa, T., Somlyo, A. P., and Somlyo, A. V., 1984, Release and recycling of calcium by the sarcoplasmic reticulum in guinea-pig portal vein smooth muscle, J. Physiol. 355: 677–695.

    CAS  Google Scholar 

  • Bozler, E., 1969, Role of calcium in initiation of activity of smooth muscle, Am. J. Physiol. 216: 671–674.

    CAS  Google Scholar 

  • Bradley, A. B., and Morgan, K. G., 1985, Cellular Ca2+ monitored by aequorin in adenosine-mediated smooth muscle relaxation, Am. J. Physiol. 248: H109–H117.

    CAS  Google Scholar 

  • Bulbring, E., 1955, Correlation between membrane potential, spike discharge and tension in smooth muscle, J. Physiol. 128: 200–221.

    CAS  Google Scholar 

  • Burnstock, G., 1970, Structure of smooth muscle and its innervation, in: “Smooth Muscle,” E. Bulbring, A. F. Brading, A. W. Jones, and T. Tomita, eds., pp. 1–69, Edward Arnold, London.

    Google Scholar 

  • Burnstock, G., 1975, Innervation of vascular smooth muscle: histochemistry and electron microscopy, Clin. Exp. Pharmacol. Physiol. Supp. 2: 7–20.

    Google Scholar 

  • Casteels, R., Kitamura, K., Kuriyama, H., and Suzuki, H., 1977a, The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery, J. Physiol. 271: 41–61.

    CAS  Google Scholar 

  • Casteels, R., Kitamura, K., Kuriiyama H., and Suzuki, H. 1977b, Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery, J. Physiol. 271: 63–79.

    CAS  Google Scholar 

  • Casteels, R., and Droogmans, G., 1981, Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery, J. Physiol. 317: 263–279.

    CAS  Google Scholar 

  • Casteels, R., Raeymaekers, L., Suzuki, H., and van Eldere, J., 1981, Tension response and 45Ca release in vascular smooth muscle incubated in Ca-free solution, Pflugers Arch. 392: 139–145.

    Article  CAS  Google Scholar 

  • Cauvin, C., Loutzenhiser, R., Hwang, O., and van Breemen, C., 1982, Α1-adrenoceptors induce Ca influx and intracellular Ca release in isolated rabbit aorta, Eur. J. Pharmacol. 84: 233–235.

    Google Scholar 

  • Cauvin, C., Saida, K., and van Breemen, C., 1984, Extracellular Ca2+dependence and diltiazem inhibition of contraction in rabbit conduit arteries and mesenteric resistance vessels, Blood Vessels, 21: 23–31.

    CAS  Google Scholar 

  • Cheung, D. W., 1984, Neural regulation of electrical and mechanical activities in the rat tail artery, Pflugers Arch. 400: 335–337.

    Article  CAS  Google Scholar 

  • Cheung, D. W., 1985, An electrophysiological study of a-adrenoceptor mediated excitation-contraction coupling in the smooth muscle cell of the rat saphenous vein, Br. J. Pharmac. 84: 265–271.

    CAS  Google Scholar 

  • Creed, K. E., 1979, Functional diversity of smooth muscle, Br. Med. Bull. 35: 243–247.

    Google Scholar 

  • Deth, R., and van Breemen, C., 1974, Relative contributions of Ca2+ influx and cellular Ca release during drug induced activation of the rabbit aorta, Pflugers Arch. 348: 13–22.

    Article  CAS  Google Scholar 

  • Deth, R., and van Breemen, C., 1977, Agonist induced release of intracellular Ca2+ in the rabbit aorta, J. Membr. Biol. 30: 363–380.

    CAS  Google Scholar 

  • Deth, R. C., and Lynch, C. J., 1981, Mobilization of a common source of smooth muscle Ca2+ by norepinephrine and methylxanthines, Am. J. Physiol. 240: C239–C247.

    CAS  Google Scholar 

  • Droogmans, G., Raeymaekers, L., and Casteels, R., 1977, Electro- and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery, J. Gen. Physiol. 70: 129–148.

    Article  CAS  Google Scholar 

  • Egleme, C., Godfraind, T., and Miller, R. C., 1984, Enhanced responsiveness of rat isolated aorta to clonidine after removal of the endothelium cells, Br. J. Pharmac. 81: 016–018.

    CAS  Google Scholar 

  • Evans, D. H. L., Shild, H. O., and Thesleff, S., 1958, Effects of drugs on depolarized plain muscle, J. Physiol. 143: 474–485.

    CAS  Google Scholar 

  • Funaki, S., 1960, Electrical activity of single vascular smooth muscle fibers, in: “Electrical Activity of Single Cells,” Igakushoin, Tokyo.

    Google Scholar 

  • Furchgott, R. F., and Zawadzki, J. V., 1980, The obligatory of endothelian cells in the relaxation of arterial smooth muscle of acetylcholine, Nature 288: 373–376.

    Article  CAS  Google Scholar 

  • Gabella, G., 1981, Structure of smooth muscle, in: “Smooth Muscle”, E. Bulbring, A. F. Brading, A. W. Jones, and T. Tomita, eds, pp. 1–46, Edward Arnold, London.

    Google Scholar 

  • Griffith, T. M., Henderson A. H., Edwards, D., and Lewis, M. J., 1984, Isolated perfused rabbit coronary artery and aortic strip preparations: the role of endothelium-derived relaxant factor, J. Physiol. 351: 13–24.

    CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Arch. 391: 85–100.

    Article  CAS  Google Scholar 

  • Hinke, J. A. M., 1965, Calcium requirements for noradrenaline and high potassium ion contraction in arterial smooth muscle, in: “Muscle,” W. Hinke, J. A. M., eds., pp. 269–284, Pergamon Press.

    Google Scholar 

  • Hirst, G. D. S., and Neild, T. O., 1978, An analysis of excitatory junctional potentials recorded from arterioles, J. Physiol. 280: 87–104.

    CAS  Google Scholar 

  • Hirst, G. D. S., and Neild, T. O., 1980a, Some properties of spontaneous excitatory junction potentials from arterioles of guinea pigs, J. Physiol. 303: 43–60.

    CAS  Google Scholar 

  • Hirst, G. D. S., and Neild, T: O., 1980b, Evidence for two populations of excitatory receptors for noradrenaline on arteriolar smooth muscle, Nature 283: 5749–5750.

    Google Scholar 

  • Hirst, G. D. S., and Neild, T. O., 1981, Localization of specialized noradrenaline receptors at neuromuscular junctions on arterioles of the guinea-pig, J. Physiol. 313: 343–350.

    CAS  Google Scholar 

  • Hirst, G. D. S., Neild, T. O., and Silveberg, G. D., 1982, Noradrenaline receptors on the rat basilar artery, J. Physiol. 328: 351–360.

    CAS  Google Scholar 

  • Holman, M. E., 1958, Membrane potentials recorded with high-resistance micro-electrodes; and the effects of changes in ionic environment on the electrical and mechanical activity of the smooth muscle of the taenia coli of the guinea-pig, J. Physiol. 141: 464–488.

    CAS  Google Scholar 

  • Ito, Y., Suzuki, H., and Kuriyama, H., 1977, On the roles of calcium ion during potassium induced contracture in the smooth muscle cells of the rabbit main pulmonary artery, Jap. J. Physiol. 27: 755–770.

    Article  CAS  Google Scholar 

  • Kajiwara, M., Kitamura, K. and Kuriyama, H., 1981, Neuromuscular transmission and smooth muscle membrane properties in the guinea-pig ear artery, J. Phsiol. 315: 283–302.

    CAS  Google Scholar 

  • Kawasaki, H., and Takasaki, K., 1984, Vasoconstrictor response induced by 5-hydroxytryptamine released from vascular adrenergic nerves by periarterial nerve stimulation, J. Pharmacol. Exp. Ther. 229: 816–822.

    CAS  Google Scholar 

  • Keatinge, W. R., 1966, Electrical and mechanical response of arteries to stimulation of sympathetic nerves, J. Physiol. 185: 701–715.

    CAS  Google Scholar 

  • Kou, K., Kuriyama, H., and Suzuki, H., 1982, Effects of 3,4-dihydro-8- (2-hydroxy-3-isopropylaminopropoxy)-3-nitroxy-2H-l-benzopyran (K-351) on smooth muscle cells and neuromuscular transmission in the canine mesenteric artery, Br. J. Pharmac. 77: 679–689.

    CAS  Google Scholar 

  • Kou, K., Ibengwe, J., and Suzuki, H., 1984, Effects of alpha-adrenoceptor antagonists on electrical and mechanical responses of the isolated dog mesenteric vein to perivascular nerve stimulation and exogenous noradrenaline, Naunyn-Schmiedeberg’s Arch. Pharmacol. 326: 7–13.

    Article  CAS  Google Scholar 

  • Leijten, P. A. A., and van Breemen, C., 1984, The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta, J. Physiol. 357: 327–339.

    CAS  Google Scholar 

  • Makita, Y., 1983, Effects of adrenoceptor agonists and antagonists on smooth muscle cells and neuromuscular transmission in the guinea-pig renal artery and vein, Br. J. Pharmac. 80: 671–679.

    CAS  Google Scholar 

  • Manzini, S., Maggi, C. A., and Meli, A., 1982, A simple procedure for assessing norepinephrine-induced cellular and extracellular Ca mobilization in rabbit ear artery, J. Pharmacol. Methods 8: 047–057.

    Article  CAS  Google Scholar 

  • Medgett, I. C., and Langer, S. Z., 1984, Heterogeneity of smooth muscle alpha adrenoceptors in rat tail artery in vitro, J. Pharmacol. Exp. Ther. 229: 823–830.

    CAS  Google Scholar 

  • Mekata, F., and Keatinge, W. R., 1975, Electrical behaviour of inner and outer muscle of sheep carotid artery, Nature 258: 534–535.

    Article  CAS  Google Scholar 

  • Meisheri, K. D., Palmer, R. F., and van Breemen, C., 1980, The effects of amrinone on contractility, Ca2+ uptake, and cAMP in smooth muscle, Europ. J. Pharmacol. 61: 159.

    Article  CAS  Google Scholar 

  • Morgan, K. G., 1983, Comparsion of membrane electrical activity of cat gastric submucosal arterioles and venules, J. Physiol. 345: 135–147.

    CAS  Google Scholar 

  • Morgan, J. P., and Morgan, K. G., 1984a, Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein, J. Physiol. 351: 155–167.

    CAS  Google Scholar 

  • Morgan, J. P., and Morgan, K. G., 1984b, Alteration of cytoplasmic ionized calcium levels in smooth muscle by vasodilators in the ferret, J. Physiol. 357: 539–551.

    CAS  Google Scholar 

  • Neild, T. O., and Zelcer, E., 1982, Noradrenergic neuromuscular transmission with special reference to arterial smooth muscle, Prog. Neurobiol. 19: 141–158.

    Article  CAS  Google Scholar 

  • Richardson, K. C., 1958, Electronmicroscopic observations on auerbach’s plexus in the rabbit, with special reference to the problem of smooth muscle innervation, Am. J. Anat. 103: 99–136.

    Article  CAS  Google Scholar 

  • Saida, K., and van Breemen, C., 1983, A possible Ca2+ -induced Ca2+ release mechanism mediated by norepinephrine in vascular smooth muscle, Pflugers Arch. 397: 166–167.

    Article  CAS  Google Scholar 

  • Saida, K., and van Breemen, C., 1984, Characteristics of the norepinephrine-sensitive Ca2+ store in vascular smooth muscle, Blood Vessels 21: 43–52.

    CAS  Google Scholar 

  • Sneedon, P., and Burnstock, G., 1984, ATP as a co-transmitter in rat tail artery, Europ. J. Pharmacol. 106, 149–152.

    Article  Google Scholar 

  • Suzuki, H., 1981, Effects of endogenous and exogenous noradrenaline on the smooth muscle of guinea-pig mesenteric vein, J. Physiol. 321: 495–512.

    CAS  Google Scholar 

  • Suzuki, H., and Kou, K., 1983, Electrical components contributing to the nerve-mediated contractions in the smooth muscles of the rabit ear artery, Jap. J. Physiol. 33: 743–756.

    Article  CAS  Google Scholar 

  • Tomita, T., 1980, Electrical properties of mammalian smooth muscle, in: “Smooth Muscle,” E. Bulbring, A. F. Brading, A. W. Jones, and T. Tomita, eds., pp. 197–243, Edward Arnold, London.

    Google Scholar 

  • Trapani, A., Matsuki, N., Abel, P. W., and Hermsmeyer, K., 1981, Norepinephrine produces tension through electromechanical coupling in rabbit ear artery, Europ. J. Pharmacol. 72: 87–91.

    Article  CAS  Google Scholar 

  • van Breemen, C., Farinas, B. R., Casteels, R., Gerba, P., Wuytack, F., and Deth, R., 1973, Factors controlling cytoplasmic Ca2+ concentration, Phil. Trans. R Soc. Lond. B265: 57–71.

    Google Scholar 

  • van Breemen, C., Wuytack, F., and Casteels, R., 1975, Stimulation of 45Ca efflux from smooth muscle cells by metabolic inhibition and high K depolarization, Pflugers Arch. 359: 183 - 196.

    Article  Google Scholar 

  • van Breemen, C., Hwang, O., and Meisheri, K. D., 1981, The mechanisms of inhibitory action of diltiazem on vascular smooth muscle contractility, J. Pharmacol. Exp. Ther. 218: 459–463.

    Google Scholar 

  • Waugh, W. H., 1962, Role of calcium in contractile excitation of vascular smooth muscle by epinephrine and potassium, Circ. Res. XI: 927–940.

    Google Scholar 

  • Waugh, W. H., 1965, Calcium and contraction of arterial smooth muscle, in: “Muscle,” Proc. of Symp. at Fac. of Med. Univ. of Alberta, June 1–4, 1964, W. M. Paul, E. E. Daniel, C. M. Kay, and G. Monkton, Pergamon Press.

    Google Scholar 

  • West, T. C., and Landa, J., 1956, Transmembrane potentials and contractility in the pregnant rat uterus, Am. J. Physiol. 187, 333–337.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Bolton, T.B. (1986). Mechanisms Involved in the Actions of Stimulant Drugs on Vascular Smooth Muscle. In: Magro, A., Osswald, W., Reis, D., Vanhoutte, P. (eds) Central and Peripheral Mechanisms of Cardiovascular Regulation. NATO ASI Series, vol 109. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9471-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9471-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9473-4

  • Online ISBN: 978-1-4615-9471-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics