Skip to main content

Metabolism

Energy Sources. Respiration

  • Chapter
Living Together

Abstract

ATP is the key intermediate in the metabolism of parasites as it is in all other organisms. The eukaryotic parasites with which we are dealing have the enzymatic equipment for the generation of ATP by one or several pathways. Their location in the host, or in the external environment for free-living stages concerned in transmission, determines the substrates available for energy generation and in part the pathway of catabolism, whether through aerobic respiration or aerobic or anaerobic fermentation. A parasite residing in a nearly anaerobic environment may or may not require or utilize oxygen. Many such parasites are microaerophilic, requiring oxygen in small amounts. Conversely, parasites living in a relatively oxygen-rich medium, such as the vertebrate bloodstream, may nevertheless rely principally on glycolysis or other pathways rather than on the very efficient pathway involving the tricarboxylic acid cycle and the respiratory chain with a cytochrome as terminal oxidase. I will consider in detail several important examples of each type of energy-generating pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Aikawa, M., Huff, C. G., and Sprinz, H., 1969, Comparative fine structure of the gametocytes of avian, reptilian and mammalian malarial parasites, J. Ultrastruct. Res. 26:316–331.

    Article  PubMed  CAS  Google Scholar 

  • Albach, R. A., and Booden, T., 1978, Amoebae, in: Parasitic Protozoa, Volume II (J. Kreier, ed.), Academic Press, New York, pp. 455–506.

    Google Scholar 

  • Aomine, M., 1981, The carbohydrate transport and the utilization in protozoa, Comp. Biochem. Physiol. A 68:131–147.

    Article  Google Scholar 

  • Asai, T., O’Sullivan, W. J., Kobayashi, M., Gero, A. M., Yokogawa, M., and Tatibana, M., 1983, Enzymes of the de novo pyrimidine biosynthetic pathway in Toxoplasma gondii, Mol. Biochem. Parasitol. 7:89–100.

    Article  PubMed  CAS  Google Scholar 

  • Bienen, E. J., Hill, G. C., and Shin, K.-O., 1983, Elaboration of mitochondrial function during Trypanosoma brucei differentiation, Mol. Biochem. Parasitol. 7:75–86.

    Article  PubMed  CAS  Google Scholar 

  • Blum, J. J., Yayon, A., Friedman, S., and Ginsburg, H., 1984, Effects of mitochondrial protein synthesis inhibitors on the incorporation of isoleucine into Plasmodium falciparum in vitro, J. Protozool. 31:475–479.

    PubMed  CAS  Google Scholar 

  • Bowman, L. B. R., and Flynn, I. W., 1976, Oxidative metabolism of trypanosomes, in: Biology of the Kinetoplastida (W. H. A. Lumsden, and D. A. Evans, eds.), Academic Press, New York, pp. 435–476.

    Google Scholar 

  • Brohn, F. H., and Clarkson, A. B., Jr., 1980, Trypanosoma brucei brucei: Patterns of glycolysis at 37°C in vitro, Mol. Biochem. Parasitol. 1:291–305.

    Article  PubMed  CAS  Google Scholar 

  • Brohn, F. H., and Trager, W., 1975, Coenzyme A requirement of malaria parasites: Enzymes of coenzyme A biosynthesis in normal duck erythrocytes and erythrocytes infected with Plasmodium lophurae, Proc. Natl. Acad. Sci. USA 72:2456–2458.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, C., and Behm, C. A., 1976, Regulation of respiratory metabolism in Moniezia expansa under aerobic and anaerobic conditions, in: Biochemistry of Parasites and Host-Parasite Relationships (H. van den Bossche, ed.), Elsevier/North-Holland, Amsterdam, pp. 89–94.

    Google Scholar 

  • Beuding, E., and Fisher, J., 1982, Metabolic requirements of schistosomes, J. Parasitol. 68:208–212.

    Article  Google Scholar 

  • Cannata, J. J. B., and Cazzulo, J. J., 1984, The aerobic fermentation of glucose by Trypanosoma cruzi, Comp. Biochem. Physiol. B 79:297–308.

    Article  PubMed  CAS  Google Scholar 

  • Cazzulo, J. J., 1984, Protein and amino acid catabolism in Trypanosoma cruzi, Comp. Biochem. Physiol. B 79:309–320.

    Article  PubMed  CAS  Google Scholar 

  • Divo, A. A., Geary, T. G., Jensen, J. B., and Ginsberg, H. 1985, The mitochondrion of Plasmodium falciparum visualized by Rhodamine123 fluorescence, J. Protozool. 32:442–446.

    PubMed  CAS  Google Scholar 

  • Fairbairn, D., 1970, Biochemical adaptation and loss of genetic capacity in helminth parasites, Biol. Rev. 45:29–72.

    Article  PubMed  CAS  Google Scholar 

  • Fairlamb, A. H., Blackburn, P., Ulrich, P., Chait, B. T., and Cerami, A., 1985, Trypanothione: A novel bis(glutathionyl) spermidine cofactor for glutathione reductase in trypanosomatids, Science 227:1485–1487.

    Article  PubMed  CAS  Google Scholar 

  • Ferone, R., and Roland, S., 1980, Dihydrofolate reductase: thymidylate synthase, a bifunctional polypeptide from Crithidia fasciculata, Proc. Natl. Acad. Sci. USA 77:5802–5806.

    Article  PubMed  CAS  Google Scholar 

  • Garnham, P. C. C., Bird, R. G., Baker, J. R., and Killick-Kendrick, R., 1969, Electron microscope studies on the motile stages of malaria parasites. VII. The fine structure of the merozoites of exoerythrocytic schizonts of Plasmodium berghei yoelii, Trans. R. Soc. Trop. Med. Hyg. 63:328–332

    Article  PubMed  CAS  Google Scholar 

  • Gero, A. M., O’Sullivan, W. J., Wright, L G., and Mahoney, D. F., 1983, The enzymes of pyrimidine biosynthesis in Babesia bovis and Babesia bigemina, Aust. J. Exp. Biol. Med. Sci. 61:239–243.

    Article  PubMed  CAS  Google Scholar 

  • Gero, A. M., Brown, G. V., and O’Sullivan, W. J., 1984, Pyrimidine de novo synthesis during the life cycle of the intraerythrocytic stage of Plasmodium falciparum, J. Parasitol. 70:536–541.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge, W. E., Dave, D., and Richards, W. H. G., 1979, Conversion of dihydroorotate to orotate in parasitic protozoa, Biochim. Biophys. Acta 582:390–401.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, D. J., and Bowman, I. B. R., 1980, Studies on glycerol kinase, and its role in ATP synthesis in Trypanosoma brucei, Mol. Biochem. Parasitol. 2:77–91.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, D. J., and Gutteridge, W. E., 1985, Purine and pyrimidine metabolism in the Trypanosomatidae, Mol. Biochem. Parasitol. 13:243–251.

    Article  Google Scholar 

  • Hammond, D. J., Burchell, J. R., and Pudney, M., 1985, Inhibition of pyrimidine biosynthesis de novo in Plasmodium falciparum by 2-(4-t-butylcyclohexyl)-3-hydroxy-1,4-naphthoquinone in vitro, Mol. Biochem. Parasitol. 14:97–109.

    Article  PubMed  CAS  Google Scholar 

  • Hart, D. T., and Coombs, G. H., 1982, Leishmania mexicana: Energy metabolism of amastigotes and promastigotes, Exp. Parasitol. 54:397–409.

    Article  PubMed  CAS  Google Scholar 

  • Hill, B., Kilsby, J., Rogerson, G. W., McIntosh, R. T., and Ginger, C. D., 1980, The enzymes of pyrimidine biosynthesis in a range of parasitic protozoa and helminths, Mol. Biochem. Parasitol. 2:123–134.

    Article  Google Scholar 

  • Honigberg, B. M., Volkmann, D., Entzeroth, R., and Scholtyseck, E., 1984, A freeze-fracture electron microscope study of Trichomonas vaginalis Donné and Tritrichomonas foetus (Riedmüller), J. Protozool. 31:116–131.

    PubMed  CAS  Google Scholar 

  • Howells, R. E., 1970, Mitochondrial changes during the life cycle of Plasmodium berghei, Ann. Trop. Med. Parasitol. 64:181–187.

    PubMed  CAS  Google Scholar 

  • Howells, R. E., 1970, Cytochrome oxidase activity in a normal and some drug-resistant strains of Plasmodium berghei-A cytochemical study. II. Sporogonic stages of a drug-sensitive strain, Ann. Trop. Med. Parasitol. 64:223–225.

    PubMed  CAS  Google Scholar 

  • Kidder, G. W., Dewey, V. C., and Nolan, L. L., 1978, Transport and accumulation of purine bases by Crithidia fasciculata, J. Cell. Physiol. 96:165–170.

    Article  PubMed  CAS  Google Scholar 

  • Köhler, P., and Bachmann, R., 1980, Mechanisms of respiration and phosphorylation in Ascaris muscle mitochondria, Mol. Biochem. Parasitol. 1:75–90.

    Article  PubMed  Google Scholar 

  • Lindmark, D. G., 1980, Energy metabolism of the anaerobic protozoan, Giardia lamblia, Mol. Biochem. Parasitol. 1:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Lindmark, D. G., and Jarroll, E. L., 1982, Pyrimidine metabolism in Giardia lamblia trophozoites, Mol. Biochem. Parasitol. 5:291–296.

    Article  PubMed  CAS  Google Scholar 

  • Lindmark, D. G., and Jarroll, E. L., 1984, Metabolism of trophozoites, in: Giardia and Giardiasis (S. L. Erlandsen and E. A. Meyer, eds.), Plenum Press, New York, pp. 65–80.

    Google Scholar 

  • Lindmark, D. G., and Müller, M., 1973, Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus and its role in pyruvate metabolism, J. Biol. Chem. 248:7724–7728.

    PubMed  CAS  Google Scholar 

  • Looker, D. L., Berens, R. L., and Marr, J. J., 1983, Purine metabolism in Leishmania donovani amastigotes and promastigotes, Mol. Biochem. Parasitol. 9:15–28.

    Article  PubMed  CAS  Google Scholar 

  • Marczak, R., Gorrell, T. E., and Müller, M. 1983, Hydrogenosomal ferredoxin of the anaerobic Protozoon, Tritrichomonas foetus, J. Biol. Chem. 258:12427–12433.

    PubMed  CAS  Google Scholar 

  • Misset, O., and Opperdoes, F. R., 1984, Simultaneous purification of hexokinase, class-1 fructose bisphosphate aldolase, triosephosphate isomerase and phosphoglycerate kinase from Trypanosoma brucei, Eur. J. Biochem. 144:475–483.

    Article  PubMed  CAS  Google Scholar 

  • Moulder, J. W., 1983, Chlamydial adaptation to intracellullar habitats, in: Microbiology-1983 (D. Schlessinger, ed.), American Society for Microbiology, Washington, D.C. pp. 370–374.

    Google Scholar 

  • Mukkada, A. J., Meade, J. C., Glaser, T. A., and Bonventre, P. F., 1985, Enhanced metabolism of Leishmania donovani amastigotes at acid pH: An adaptation for intracellular growth, Science 229:1099–1101.

    Article  PubMed  CAS  Google Scholar 

  • Müller, M., 1975, Biochemistry of protozoan microbodies: Peroxisomes, α-glycerophosphate oxidase bodies, hydrogenosomes, Annu. Rev. Microbiol. 29:467–483.

    Article  PubMed  Google Scholar 

  • Müller, M., and Lindmark, D. G., 1978, Respiration of hydrogenosomes of Tritrichomonas foetus. II. Effect of CoA on pyruvate oxidation, J. Biol. Chem. 253:1215–1218.

    PubMed  Google Scholar 

  • Opperdoes, F. R., Borst, P., and Fonck, K., 1976, The potential use of inhibitors of glycerol-3-phosphate oxidase for chemotherapy of African trypanosomiasis, FEBS Lett. 62:169–172.

    Article  PubMed  CAS  Google Scholar 

  • Pfefferkorn, E. R., 1978, Toxoplasma gondii: The enzymic defect of a mutant resistant to 5-fluo-rodeoxyuridine, Exp. Parasitol. 44:26–35.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, R. E., Warren, L. G., Susskind, B., and Lo, H.-S., 1977„ An energy conserving pyruvateto-acetate pathway in Entamoeba histolytica: Pyruvate synthase and a new acetate thiokinase, J. Biol. Chem. 252:726–731.

    PubMed  CAS  Google Scholar 

  • Reyes, P., Rathod, P. K., Sanchez, D. J., Mrema, J. E. K., Rieckmann, K. H., and Heidrich, H.-G., 1982, Enzymes of purine and pyrimidine metabolism from the human malaria parasite, Plasmodium falciparum, Mol. Biochem. Parasitol. 5:275–290.

    Article  PubMed  CAS  Google Scholar 

  • Saz, H. J., 1981, Energy metabolisms of parasitic helminths: Adaptation to parasitism, Annu. Rev. Physiol. 43:323–341.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel, L. W., and Pflaum, W. K., 1970, Carbohydrate metabolism in Plasmodium knowlesi, Comp. Biochem. Physiol. 37:543–553.

    Article  CAS  Google Scholar 

  • Scheibel, L. W., Ashton, S. H., and Trager, W., 1979, Plasmodium falciparum: Microaerophilic requirements in human red blood cells, Exp. Parasitol. 47:410–418.

    Article  PubMed  CAS  Google Scholar 

  • Schiller, E. L., Bueding, E., Turner, V. M., and Fisher, J., 1975, Aerobic and anaerobic carbohydrate metabolism and egg production of Schistosoma mansoni in vitro, J. Parasitol. 61:385–389.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, I. W., 1979, Biochemistry of Plasmodium (malarial parasites), Microbiol. Rev. 43:453–495.

    PubMed  CAS  Google Scholar 

  • Smyth, J. D., 1969, The Physiology of Cestodes, Freeman, San Francisco.

    Google Scholar 

  • Speck, J. F., Moulder, J. W., and Evans, E. A., Jr., 1946, The biochemistry of the malaria parasite. V. Mechanism of pyruvate oxidation in the malaria parasite, J. Biol. Chem. 164:119–144.

    PubMed  CAS  Google Scholar 

  • Tanabe, K., 1983, Staining of Plasmodium yoelii-infected mouse erythrocytes with the fluorescent dye Rhodamine123 Protozool. 30:707–710.

    CAS  Google Scholar 

  • Visser, N., and Opperdoes, F. R., 1980, Glycolysis in Trypanosoma brucei, Eur. J. Biochem. 103:623–632.

    Article  PubMed  CAS  Google Scholar 

  • Von Brand, T., 1979, Biochemistry and Physiology of Endoparasites, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Wallach, M., and Kilejian, A., 1982, The importance of tRNA for the in vitro cell-free translation of messenger RNA isolated from the malaria parasite Plasmodium lophurae, Mol. Biochem. Parasitol. 5:245–261.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. C., and Aldritt, S., 1983, Purine salvage networks in Giardia lamblia, J. Exp. Med. 158:1703–1712.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. C., Verham, R., Tzeng, S. F., Aldritt, S., and Cheng, H., 1983, Pyrimidine metabolism in Tritrichomonas foetus, Proc. Natl. Acad. Sci. USA 80:2564–2568.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. C., Verham, R., Rice, A., and Tzeng, S., 1983, Purine salvage by Tritrichomonas foetus, Mol. Biochem. Parasitol. 8:325–337.

    Article  PubMed  CAS  Google Scholar 

  • Webster, H. K., and Whaun, J. M., 1981, Purine metabolism during continuous erythrocyte culture of human malaria parasites (P. falciparum), in: The Red Cell (G. J. Brewer, ed.), Liss, New York, pp. 557–570.

    Google Scholar 

  • Weinbach, E. C., Diamond, L. S., and Claggett, E., 1976, Iron-sulfur proteins of Entamoeba histolytica, J. Parasitol. 62:127–128.

    Article  CAS  Google Scholar 

  • White, A., Handler, P., Smith, E. L., Hill, R. L., and Lehman, L. R., 1978, Principles of Biochemistry (6th edition), McGraw-Hill, New York.

    Google Scholar 

  • Winkler, H. H., 1976, Rickettsial permeability: An ADP-ATP transport system, J. Biol. Chem. 251:389–396.

    PubMed  CAS  Google Scholar 

  • Winkler, H., 1982, Rickettsiae: Intracytoplasmic life, ASM News 48:184–187.

    Google Scholar 

  • Yamada, K. A., and Sherman, I. W., 1981, Purine metabolism by the avian malarial parasite Plasmodium lophurae, Mol. Biochem. Parasitol. 3:253–264.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Trager, W. (1986). Metabolism. In: Living Together. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9465-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9465-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9467-3

  • Online ISBN: 978-1-4615-9465-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics