Skip to main content

The Brain and Sense Organs of the Earliest Vertebrates: Reconstruction of a Morphotype

  • Chapter
Evolutionary Biology of Primitive Fishes

Part of the book series: NATO ASI Series ((NSSA,volume 103))

Abstract

Speculations on the nature of the brain and sense organs in the earliest vertebrates have traditionally been based on two different strategies. One approach has been to examine the brain and sense organs in living hagfishes and lampreys, with the assumption that these taxa are primitive and thus represent the starting point of vertebrate phylogeny (Worthington, 1906; Ariens Kappers, 1929; Heier, 1948; Stahl, 1977). This approach is confounded by considerable differences in the organization of the brain and sense organs in hagfishes and lampreys themselves, so that a single pattern of organization can not be recognized, and it also ignores the fact that these living taxa have a long evolutionary history during which many changes have obviously occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • AMEMIYA, F. 1983. Afferent connections to the tectum mesencephali in the hagfish, Eptatretus burgert an HRP study. J. Hirnforsch. 24: 225–236.

    PubMed  CAS  Google Scholar 

  • ARIëNS KAPPERS, C.U. 1929. The evolution of the nervous system. Bohn, Haarlem.

    Google Scholar 

  • AYERS, H. 1892. Vertebrate cephalogenesis. II. A contribution to the morphology of the vertebrate ear, with a reconsideration of its function. J. Morph. 6:1–360.

    Google Scholar 

  • AYERS, H., and J. WORTHINGTON. 1907. The skin end-organs of the trigeminus and lateralis nerves of Bdellostoma dombeyi. Amer. J. Anat. 7: 327–336.

    Google Scholar 

  • BARRY, M.A., and R.L. BOORD. 1984. The spiracular organ of sharks and skates: anatomical evidence indicating a mechanoreceptive role. Science 226: 990–992.

    PubMed  CAS  Google Scholar 

  • BJERRING, H.C. 1984. Major anatomical steps toward craniotedness: a heterodox view based largely on embryological data. J. Vert. Paleontol. 4: 17–29.

    Google Scholar 

  • BODZNICK, D., and R.G. NORTHCUTT. 1981. Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive. Science 212: 465–467.

    PubMed  CAS  Google Scholar 

  • BODZNICK, D., and D.G. PRESTON. 1983. Physiological characterization of electroreceptors in the lampreys Ichthyomyzon unicuspis and Petromyzon marinus J. comp. Physiol. 152: 209–217.

    Google Scholar 

  • BONE, Q. 1961. The organization of the atrial nervous system of amphioxus (Branchiostoma lanceolatum Pallas.). Phil. Trans. R. Soc. (Lond.) 24B: 241–269.

    Google Scholar 

  • BONE, Q. 1963. The central nervous system. pp. 50–91 In Brodai, A., and R. Fänge [eds.j The biology of Myxine. Universitetsforlaget, Oslo.

    Google Scholar 

  • BULLOCK, T.H., D.A. BODZNICK, and R.G. NORTHCUTT. 1983. The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res. Rev. 6: 25–46.

    Google Scholar 

  • COLLIN, J.P. 1969. La cupule sensorielle de l’organe pineal de la lamproie de planer. Archs. Anat. Microsc. Morph. Exp. 58: 145–182.

    CAS  Google Scholar 

  • Cu.L. 1929. The development of the brain of Bdellostoma stouti, I. External growth changes. J. comp. Neurol. 47: 343–403.

    Google Scholar 

  • CONEL, J.L. 1931. The development of the brain of Bdellostoma stouti, II. Internal growth changes. J. comp. Neurol. 52: 365–501.

    Google Scholar 

  • CRIM, J.W., A. URANO, and A. GORBMAN. 1979. Immunocytochemical studies of luteinizing hormone-releasing hormone in brains of agnathan fishes. I. Comparisons of adult Pacific lamprey (Entosphenus tridentata) and the Pacific hagfish (Eptatretus stouti). Gen. comp. Endocrinol. 37: 294–305.

    PubMed  CAS  Google Scholar 

  • DAMAS, H. 1944. Recherches sur le développement de Lampetra fluviatilis L. Arch de Biol. 55: 1–284.

    Google Scholar 

  • D’AMICO-MARTEL, A., and D.M. NODEN. 1983. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Amer. J. Anat. 166: 445–468.

    PubMed  Google Scholar 

  • DEMSKI, L.S. 1984. The evolution of neuroanatomic substrates of reproductive behaviour: sex steroid and LHRH-specific pathways including the terminal nerve. Amer. Zool. 24: 809–830.

    CAS  Google Scholar 

  • DEMSKI, L.S., and R.G. NORTHCUTT. 1983. The terminal nerve: a new chemosensory system in vertebrates? Science 220: 435–437.

    PubMed  CAS  Google Scholar 

  • DENISON, R.H. 1947. The exoskeleton of Tremataspis. Amer. J. Sci. 254: 337–365.

    Google Scholar 

  • DENISON, R.H. 1964. The cyathaspididae. Fieldiana. 13: 309–473.

    Google Scholar 

  • DOHRN, A. 1883. Studien zur Urgeschichte des Wirbeltierekörpers. III. Die Entstehung und Bedeutung der Hypophysis bei Petromyzon planeri. Pubbl. Staz. zool. Napoli 4: 172–189.

    Google Scholar 

  • EAKIN, R.M. 1973. The third eye. University of California Press, Berkeley.

    Google Scholar 

  • EBINGER, P., K. WäCHTLER, and S. STäHLER. 1983. Allometrical studies in the brain of cyclostomes. J. Hirnforsch. 24: 545–550.

    PubMed  CAS  Google Scholar 

  • EDDY, J.M.P. 1969. Metamorphosis and the pineal complex in the brook lamprey, Lampetra planeri. J. Endocrinol. 44: 451–452.

    PubMed  CAS  Google Scholar 

  • EDDY, J.M.P. 1970. The structure and function of the pineal complex of Lampetra spp. Ph.D. Thesis. University of Wales.

    Google Scholar 

  • EDDY, J.M.P. 1972. The pineal complex. pp. 91–103 In Hardisty, M.W., and I.C. Potter [eds.] The biology of lampreys, vol. 2. Academic Press, New York.

    Google Scholar 

  • EDDY, J.M.P., and R. STRAHAN. 1968. The role of the pineal complex in the pigmentary effector system of the lampreys, Mordacia mordax (Richardson) and Geotria australis Gray. Gen. comp. Endocrinol. 11: 528–534.

    PubMed  CAS  Google Scholar 

  • ELDREDGE, N., and J. CRACRAFT. 1980. Phylogenetic patterns and the evolutionary process. Columbia University Press, New York.

    Google Scholar 

  • FERNHOLM, B., and K. HOLMBERG. 1975. The eyes in three genera of hagfish (Eptatretus, Paramyxine and Myxine)—a case of degenerative evolution. Vision Res. 15: 253–259.

    PubMed  CAS  Google Scholar 

  • FINGER, T.E. 1983. The gustatory system in teleost fish. pp. 285–309 In Northcutt, F.G., and R.E. Davis [eds.] Fish neurobiology, vol. 1. University of Michigan Press, Ann Arbor.

    Google Scholar 

  • FINGER, T.E., and C.M. ROVAINEN. 1978. Retrograde HRP labeling of the oculomotoneurons in adult lampreys. Brain Res. 154: 123–127.

    PubMed  CAS  Google Scholar 

  • FRITZSCH, B., M.D. CAPRON DE CAPRONA, K. WäCHTLER, and K.H. KöRTJE. 1984. Neuroanatomical evidence for electroreception in lampreys. Z. Naturforsch. 39: 856–858.

    CAS  Google Scholar 

  • FüRBRINGER, M. 1897. Über die spino-occipitalen Nerven der Selachier und Holocephalen und ihre vergleichende Morphologie. Festschrift zum 70sten Geburtstage von Carl Gegenbauer. 3: 349–788.

    Google Scholar 

  • GANS, C., and R.G. NORTHCUTT. 1983. Neural crest and the origin of vertebrates: a new head. Science 220: 268–274.

    PubMed  CAS  Google Scholar 

  • GANS, C., and R.G. NORTHCUTT. 1985. Neural crest: the implications for comparative anatomy. In Duncker, H.R., and G. Fleischer [eds.] Functional morphology of vertebrates. Gustav Fischer Verlag, Stuttgart (in press).

    Google Scholar 

  • GEORGIEVA, V., R.A. PATZNER, and H. ADAM. 1979. Transmissions- und rasterelektronen- mikroskopische Untersuchung an den Sinnesknospen der Tentakeln von Myxine glutinosa L. (Cyclostomata). Zoologica Scripta 8: 61–67.

    Google Scholar 

  • GOODRICH, E.S. 1930. Studies on the structure and development of vertebrates. Macmillan, London.

    Google Scholar 

  • GOODRICH, E.S. 1937. On the spinal nerves of the myxinoidea. Quart. J. Microsc. Sci. 80: 153–158.

    Google Scholar 

  • HALSTEAD, L.B. 1973. The heterostracan fishes. Biol. Rev. 48: 279–332.

    Google Scholar 

  • HARDISTY, M.W. 1979. Biology of the cyclostomes. Chapman and Hall, London.

    Google Scholar 

  • HEALEY, E.G. 1972. The central nervous system. pp. 307–372 In Hardisty, M.W., and I.C. Potter [eds.] The biology of lampreys, vol. 2. Academic Press, New York.

    Google Scholar 

  • HEIER, P. 1948. Fundamental principles in the structure of the brain. A study of the brain of Petromyzon fluviatilis!. Acta Anat. 5: 1–213.

    Google Scholar 

  • HOLMGREN, N. 1919. Zur Anatomie des Gehirns von Myxine. Kungl. Svenska vet. Akad. Handl. 60: 1–96.

    Google Scholar 

  • HOLMGREN, N. 1942. General morphology of the lateral sensory line system of the head in fish. Kungl. Svenska vet. Akad. Handl. 20: 1–46.

    Google Scholar 

  • HOLMGREN, N. 1946. On two embryos of Myxine glutinosa. Acta Zool. (Stockh.) 27: 1–90.

    Google Scholar 

  • HOLMGREN, N., and T. PEHRSON. 1949. Some remarks on the ontogenetical development of the sensory lines on the cheek in fishes and amphibians. Acta Zool. (Stockh.) 30: 249–314.

    Google Scholar 

  • JANSEN, J. 1930. The brain of Myxine glutinosa. J. comp. Neurol. 49: 359–507.

    Google Scholar 

  • JANVIER, P. 1974a. The structure of the naso-hypophysial complex and the mouth in fossil and extant cyclostomes, with remarks on amphiaspiforms. Zoologica Scripta 3: 193–200.

    Google Scholar 

  • JANVIER, P. 1974b. The sensory line system and its innervation in the Osteostraci (Agnatha, Cephalaspidomorphi). Zoologica Scripta 3: 91–99.

    Google Scholar 

  • JANVIER, P. 1978. Les negeoires paires des Ostéostracés et la position systématique des Céphalaspidomorphes. Ann. de Paléontol. (Vertébres). 64: 113–142.

    Google Scholar 

  • JANVIER, P. 1981. The phylogeny of the craniata, with particular reference to the significance of fossil “agnathans”. J. Vert. Paleontol. 1: 121–159.

    Google Scholar 

  • JANVIER, P., and A. BLIECK. 1979. New data on the internal anatomy of the Heterostraci (Agnatha), with general remarks on the phylogeny of the Craniota. Zoologica Scripta 8: 287–296.

    Google Scholar 

  • JARVIK, E. 1965. Die Raspelzunge der Cyclostomen und die pentadactyle extremität als Beweis für monophyletische Herkunft. Zool. Anz. 175: 8–143.

    Google Scholar 

  • JARVIK, E. 1980. Basic structure and evolution of vertebrates. 2 vols. Academic Press, London.

    Google Scholar 

  • JOHNSTON, J.B. 1902. The brain of Petromyzon J. comp. Neurol. 12: 1–86.

    Google Scholar 

  • JOHNSTON, J.B. 1905. The cranial nerve components of Petromyzon. Morph. Jb. 34: 149–203.

    Google Scholar 

  • KENNEDY, M.C., and K. RUBINSON. 1977. Retinal projections in larval, transforming and adult sea lamprey, Petromyzon marinus. J. comp. Neurol. 171: 465–480.

    PubMed  CAS  Google Scholar 

  • KIAER, J. 1930. Ctenaspis, a new genus of cyathaspidian fishes. Skr. Svalb. Ishavet. 33: 1–7.

    Google Scholar 

  • KLEEREKOPER, H. 1969. Olfaction in fishes. Indiana University Press, Bloomington.

    Google Scholar 

  • KLEEREKOPER, H. 1972. The sense organs. pp. 373–404 In Hardisty, M.W., and I.C. Potter [eds.] The biology of lampreys, vol. 2. Academic Press, New York.

    Google Scholar 

  • KUSUNOKI, T., and F. AMEMIYA. 1983. Retinal projections in the hagfish, Eptatretus bürgert. Brain Res. 262: 295–298.

    PubMed  CAS  Google Scholar 

  • LandACRE, F.L. 1910. The origin of the cranial ganglia in Ameiurus. J. comp. Neurol. 20: 309–411.

    Google Scholar 

  • LARSELL, O. 1967. The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, Minneapolis.

    Google Scholar 

  • LOCY, W.A. 1905a. On a newly recognized nerve connected with the forebrain of selachians. Anat. Anz. 26: 33–63.

    Google Scholar 

  • LOCY, W.A. 1905b. A footnote to the ancestral history of the vertebrate brain. Science 22: 180–183.

    PubMed  CAS  Google Scholar 

  • LøVTRUP, S. 1977. The phylogeny of vertebrata. Wiley, London.

    Google Scholar 

  • LOWENSTEIN, O., M.P. OSBORNE, and R.A. THORNHILL. 1968. The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.). Proc. Roy. Soc. (Lond.) 170B: 113–134.

    Google Scholar 

  • LOWENSTEIN, O., and R.A. THORNHILL. 1970. The labyrinth of Myxine: anatomy, ultrastructure and electrophysiology. Proc. R. Soc. (Lond.) 176B: 21–42.

    Google Scholar 

  • MARINELLI, W., and A. STRENGER. 1954. Vergleichende Anatomie und Morphologie der Wirbeltiere. 1: Lampetra fluviatilis L. Franz Deuticke, Vienna.

    Google Scholar 

  • MCCORMICK, C.A. 1982. The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J. Morph. 171: 159–181.

    Google Scholar 

  • MCCREADY, P.J., and R.L. BOORD. 1976. The topography of the superficial roots and ganglia of the anterior lateral line nerve of the smooth dogfish, Mustelus canis. J. Morph. 150: 527–538.

    PubMed  CAS  Google Scholar 

  • MEREDITH, G.E., and A. BUTLER. 1983. Organization of eighth nerve afferent projections from individual endorgans of the inner ear in the teleost, Astronotus ocellatus. J. comp. Neurol. 220: 44–62.

    PubMed  CAS  Google Scholar 

  • MUNZ, H., W.E. STUMPF, and L. JENNES. 1981. LHRH systems in the brain of the platyfish. Brain Res. 221: 1–13.

    PubMed  CAS  Google Scholar 

  • NEWTH, D.R., and D.M. ROSS. 1955. On the reaction to light of Myxine glutinosa. J. exp. Biol. 32: 4–21.

    CAS  Google Scholar 

  • NIEUWENHUYS, R. 1977. The brain of the lamprey in a comparative perspective. Ann. N. Y. Acad. Sci. 299: 97–145.

    PubMed  CAS  Google Scholar 

  • NODEN, D.M. 1983. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Amer. J. Anat. 168: 257–276.

    PubMed  CAS  Google Scholar 

  • NORTHCUTT, R.G. 1979a. Experimental determination of the primary trigeminal projections in lampreys. Brain Res. 163: 323–327.

    PubMed  CAS  Google Scholar 

  • NORTHCUTT, R.G. 1979b. Central projections of the eighth cranial nerve in lampreys. Brain Res. 167: 163–167.

    PubMed  CAS  Google Scholar 

  • NORTHCUTT, R.G. 1981. Evolution of the telencephalon in nonmammals. Ann. Rev. Neurosci. 4: 301–350.

    PubMed  CAS  Google Scholar 

  • NORTHCUTT, R.G. 1985. Electroreception in non-teleost bony fishes. In Bullock, T.H., and W. Heiligenberg [eds.] Electroreception. Wiley, New York, (in press).

    Google Scholar 

  • NORTHCUTT, R.G., and C. GANS. 1983. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Quart Rev. Biol. 58: 1–28.

    CAS  Google Scholar 

  • PATTERSON, C. 1982. Morphological characters and homology. pp. 21–74 In Joysey, K.A., and A.E. Friday [eds.] Problems of phylogenetic reconstruction. Academic Press, New York. Systematics Association Special Volume No. 21.

    Google Scholar 

  • PEHRSON, T. 1949. The ontogeny of the lateral line system in the head of dipnoans. Acta Zool. (Stockh.) 30: 153–182.

    Google Scholar 

  • PETERS, A. 1963. The peripheral nervous system. pp. 92–123 In Brodai, A., and R. Fänge [eds.] The biology of Myxine. Universitetsforlaget, Oslo.

    Google Scholar 

  • PLATE, L. 1924. Allgemeine Zoologie und Abstammungslehre. Vol. II. Die Sinesorgane der Tiere. G. Fischer, Jena.

    Google Scholar 

  • PLATEL, R., and C. DELFINI. 1981. L’éncephalisation chez la myxine (Myxine glutinosa L.). Analyse quantifiée des principales subdivisions encéphaliques. Cah. Biol. Mar. 22: 407–430.

    Google Scholar 

  • POPPER, A.N., and R.G. NORTHCUTT. 1983. Structure and innervation of the inner ear of the bowfin, Amia calva. J. comp. Neurol. 213: 279–286.

    PubMed  CAS  Google Scholar 

  • RONAN, M.C. 1983. Ascending and descending spinal projections in petromyzontid and myxinoid agnathans. Ph.D. thesis, University of Michigan.

    Google Scholar 

  • RONAN, M.C., and D. BODZNICK. 1984. Identification of electroreceptors in lampreys. Soc. Neurosci. 10: 853 (abst.).

    Google Scholar 

  • RONAN, M.C., and R.G. NORTHCUTT. 1982. Primary projections of the lateral line nerves in the northern silver lamprey. Soc. Neurosci. 8: 764 (abst.).

    Google Scholar 

  • ROVAINEN, C.M. 1979. Neurobiology of lampreys. Physiol. Revs. 59:1007–1077.

    CAS  Google Scholar 

  • RU.M. 1982. Neurophysiology. pp. 1–136 In Hardisty, M.W. and I.C. Potter [eds.] The biology of lampreys, vol. 4A. Academic Press, London.

    Google Scholar 

  • RUBEL, E.W. 1978. Ontogeny of structure and function in vertebrates auditory system. pp. 135–237 In Jacobson, M. [ed.] Handbook of sensory physiology, vol. 9. Development of Sensory Systems. Springer-Verlag, New York.

    Google Scholar 

  • SCHOBER, W. 1964. Vergleichend-anatomische Untersuchungen am Gehirn der Larven und adulten Tiere von Lampetra fluviatilis (Linné, 1758) und Lampetra planen (Bloch, 1784). J. Hirnforsch. 7: 107–209.

    PubMed  CAS  Google Scholar 

  • SEYDEL, O. 1895. Über die Nasenhöhle und das Jacobson’sche Organ der Amphibien. Eine vergleichend-anatomische Untersuchung. Morph. Jb. 23: 453–543.

    Google Scholar 

  • SPRINGER, A.D. 1983. Centrifugal innervation of goldfish retina from ganglion cells of the nervus terminalis. J. comp. Neurol. 214: 404–415.

    Google Scholar 

  • STAHL, B.J. 1977. Early and recent primitive brain forms. Ann. N. Y. Acad. Sci. 299: 87–96.

    PubMed  CAS  Google Scholar 

  • STENSIö, E.A. 1927. The Downtonian and Devonian vertebrates of Spitsbergen. 1. Family Cephalaspidae. Skr. Svalb. Ishavet. 12: 1–391.

    Google Scholar 

  • STENSIö, E.A. 1932. The Cephalaspids of Great Britain. The British Museum, London.

    Google Scholar 

  • STENSIö, E.A. 1947. The sensory lines and dermal bones of the cheek in fishes and amphibians. Kungl. Svenska vet. Akad. Handl. 24: 1–195.

    Google Scholar 

  • STENSIö, E.A. 1963. The brain and cranial nerves in fossil, lower craniate vertebrates. Skrifter utgitt av Det Norske Videnskaps-Akademi. I. Mat.-Naturv. Klasse. Ny Serie. No. 13: 1–120.

    Google Scholar 

  • STENSIö, E.A. 1968. The cyclostomes with special reference to the diphyletic origin of the Petromyzontida and Myxinoidea. pp. 13–71 In Ørvig, T. [ed.] Current problems of lower vertebrate phylogeny. Proceedings of the Fourth Nobel Symposium. Wiley, New York.

    Google Scholar 

  • THOMSON, K.S. 1977. On the individual history of cosmine and possible electroreceptive function of the pore-canal system in fossil fishes. pp. 247–270 In Andrews, S.M., R.S. Miles, and A.D. Walker. [eds.] Problems in vertebrate evolution. Linn. Soc. Symp. Ser. 4.

    Google Scholar 

  • THORNHILL, R.A. 1972. The development of the labyrinth of the lamprey (Lampetra fluviatilis Linn. 1758). Proc. R. Soc. (Lond.) 181B: 175–198.

    Google Scholar 

  • VESSELKIN, N.P., T.V. ERMAKOVA, J. Repérant. A.A. Kosareva, and N.B. Kenigfest. 1980. The retinofugal and retinopetal systems in Lampetra fluviatilis. An experimental study using radioautographic and HRP methods. Brain Res. 195: 453–460.

    PubMed  CAS  Google Scholar 

  • VON KUPFFER, C. 1894. Über Monorhinie and Amphirhinie. Sitzber. Math.- physik. Classe. Akad. Wiss. München. 24: 51–60.

    Google Scholar 

  • WACHTLER, F., H.J. JACOB. M. JACOB, and B. CHRIST. 1984. The extrinsic ocular muscles in birds are derived from the prechordal plate. Naturwissen. 71: 379–380.

    CAS  Google Scholar 

  • WHITE, E.I. 1935. The ostracoderm Pteraspis Kner and the relationships of the agnathous vertebrates. Phil. Trans. R. Soc. (Lond.) 225B: 381–457.

    Google Scholar 

  • WHITEAR, M., and E.B. LANE. 1983a. Multivillous cells: epidermal sensory cells of unknown function in lamprey skin. J. Zool. (Lond.) 201: 259–272.

    Google Scholar 

  • WHITEAR, M., and E.B. LANE. 1983b. Oligovillous cells of the epidermis: sensory elements of lamprey skin. J. Zool. (Lond.) 199: 359–384.

    Google Scholar 

  • WHITING, H.P. 1972. Cranial anatomy of the ostracoderms in relation to the organization of larval lampreys. pp. 1–20 In Joysey, K.A., and T.S. Kemp [eds.] Studies in vertebrate evolution. Winchester Press, New York.

    Google Scholar 

  • WHITING, H.P., and L.B.H. TARLO. 1965. The brain of the Heterostraci (Agnatha). Nature 207: 829–831.

    Google Scholar 

  • WILEY, E.O. 1981. Phylogenetics. Wiley, New York.

    Google Scholar 

  • WILLIS, W.D., and R.E. COGGESHALL. 1978. Sensory mechanisms of the spinal cord. Plenum, New York.

    Google Scholar 

  • WILSON, H.V., and J.E. MATTOCKS. 1897. The lateral sensory anlge in the salmon. Anat. Anz. 13: 658–660.

    Google Scholar 

  • WORTHINGTON, J. 1906. The descriptive anatomy of the brain and cranial nerves of Bdellostoma dombeyi. Quart. J. Microsc. Sci. 49: 137–181.

    Google Scholar 

  • YNTEMA, C.L. 1937. An experimental study of the origin of the cells which constitute the VIIth and VIIIth ganglia and nerves in the embryo of Amblystoma punctatum. J. exp. Zool. 75: 75–101.

    Google Scholar 

  • YOUNG, J.Z. 1935a. The photoreceptors of lampreys. I. Light-sensitive fibres in the lateral line nerves. J. exp. Biol. 12: 229–238.

    CAS  Google Scholar 

  • YOUNG, J.Z. 1935b. The photoreceptors of lampreys. II. The function of the pineal complex. J. exp. Biol. 12: 254–270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Northcutt, R.G. (1985). The Brain and Sense Organs of the Earliest Vertebrates: Reconstruction of a Morphotype. In: Foreman, R.E., Gorbman, A., Dodd, J.M., Olsson, R. (eds) Evolutionary Biology of Primitive Fishes. NATO ASI Series, vol 103. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9453-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9453-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9455-0

  • Online ISBN: 978-1-4615-9453-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics