Skip to main content

Habitat, Phylogeny and the Evolution of Osmoregulatory Strategies in Primitive Fishes

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 103))

Abstract

The application of physiological features to phylogenetics has been regarded with enthusiasm by some authors (e.g. Løvtrup, 1977; Lagios, 1979a) while being seriously questioned by others (Simpson, 1960; Scheer, 1964; Hoar, 1983). Without a doubt, many physiological features show such a degree of convergence that they are useless for phylogenetic studies at higher taxonomic levels, whereas other physiological features are sufficiently stable to provide information at least as useful as morphological data. It is difficult to predict a priori whether a particular character will show a high degree of convergence, and this problem is likely to be especially serious for physiological features where the perspective provided by prior use in systematics is generally absent. It is worth noting Nelson’s (1970) contention that the application of characters of a physiological nature to systematics is best accomplished by physiologists who most fully understand the nature of their data and the source of its variability, rather than by the “professional” systematist whose bias towards a particular “system” might prevent the physiological data from acting as a truly independent test of the conventional phylogenetic scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • BLAXTER, J.H.S., C.S. WARDLE, and B.L. ROBERTS. 1971. Aspects of the circulatory physiology and muscle systems of deep-sea fish. J. mar. biol. Assoc. U.K. 51: 991–1006.

    Article  Google Scholar 

  • BROWN, G.W., and P.P. COHEN. 1960. Comparative biochemistry of urea synthesis 3. Activities of urea-cycle enzymes in various higher and lower vertebrates. Biochem. J. 75: 82–91.

    PubMed  CAS  Google Scholar 

  • CONTE, F.P. 1969. Salt secretion. pp. 241–292 In Hoar, W.S., and D.J. Randall [eds.] Fish physiology. Academic Press, New York.

    Google Scholar 

  • DARLINGTON, P.J. 1957. Zoogeography: the geographical distribution of animals. John Wiley and Sons, New York.

    Google Scholar 

  • DENNISON, R.H. 1959. A review of the habitat of the earliest vertebrates. Fieldiana: Geol. 11: 357–457.

    Google Scholar 

  • DEPECHE, J., R. GILLES, S. DAUFRESNE, and H. CHIAPELLO. 1979. Urea content and urea production via the ornithine-urea cycle during the ontogenic development of two teleost fishes. Comp. Biochem. Physiol. 63A: 51–56.

    Article  CAS  Google Scholar 

  • EVANS, D.H. 1984. Gill Na+/H+ and Cl-/HCO3 - exchange systems evolved before the vertebrates entered fresh water. J. exp. Biol. 113: 465–469.

    PubMed  CAS  Google Scholar 

  • GORDON, M.S., K. SCHMIDT-NIELSEN, and H.M. KELLY. 1961. Osmotic regulation in the crab-eating frog Rana cancrivora. J. exp. Biol. 38: 659–678.

    CAS  Google Scholar 

  • GRIFFITH, R.W. 1980. Chemistry of the body fluids of the coelacanth, Latimeria chalumnae. Proc. R. Soc. (Lond.) B. 208: 329–347.

    Article  CAS  Google Scholar 

  • GRIFFITH, R.W. 1981. Composition of the blood serum of deep-sea fishes. Biol. Bull. 160: 250–264.

    Article  CAS  Google Scholar 

  • GRIFFITH, R.W., and P.K.T. PANG. 1979. Mechanisms of osmoregulation in the coelacanth: evolutionary implications. Occ. Pap. Calif. Acad. Sci. 134: 79–93.

    Google Scholar 

  • GRIFFITH, R.W., P.K.T. PANG, and L.A. BENEDETTO. 1979. Urea tolerance in the killifish, Fundulus heteroclitus. Comp. Biochem. Physiol. 62A: 327–330.

    Article  CAS  Google Scholar 

  • HALSTEAD, L.B. 1969. The origin and early evolution of calcified tissue in the vertebrates. Proc. Malacol. Soc. (Lond.) 38: 552–553.

    Google Scholar 

  • HALSTEAD, L.B. 1973. The heterostracan fishes. Biol. Rev. 48: 279–332.

    Article  Google Scholar 

  • HICKMAN, C.P., and B.F. TRUMP. 1969. The kidney. pp. 91–329 In Hoar, W.S., and D.J. Randall. [eds.] Fish physiology, Vol. 1. Academic Press, New York.

    Google Scholar 

  • HOAR, W.S. 1983. General and comparative physiology, 3rd ed. Prentice Hall, Inc., Englewood Cliffs, N.J.

    Google Scholar 

  • HOAR, W.S., and D.J. RandALL [eds.]. 1984. Fish physiology. vol. 10. Gills, Part B: ion and water transfer. Academic Press, Orlando, Fl.

    Google Scholar 

  • HOLMES, W.N., and E.M. DONALDSON. 1969. The body compartments and the distribution of electrolytes. pp. 1–89 In Hoar, W.S., and D.J. Randall, [eds.] Fish physiology, vol. 1. Academic Press, New York.

    Google Scholar 

  • HUGGINS, A.K., G. SKUTCH, and E. BALDWIN. 1969. Ornithine-urea cycle enzymes in teleost fishes. Comp. Biochem. Physiol. 28: 587–602.

    Article  CAS  Google Scholar 

  • KIRSCHNER, L.B. 1983. Sodium chloride absorption across the body surface: frog skins and other epithelia. Amer. J. Physiol. 244: R249–R443.

    Google Scholar 

  • LACY, E.R.; E. REALE, D. SCHLUSSELBERG, W.K. SMITH, and D.J. WOODWARD. 1985. A renal countercurrent system in marine elasmobranch fish: a computer assisted reconstruction. Science 227: 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  • LAGIOS, M.D. 1979a. The coelacanth and the Chondrichthyes as sister groups: a review of shared apomorph characters and a cladistic analysis and reinterpretation. Occ. Pap. Calif. Acad. Sci. 134: 25–44.

    Google Scholar 

  • LAGIOS, M.D. 1979b. Reply to the rebuttal of Leonard Compagno, “Coelacanths: shark relative or bony fishes”. Occ. Pap. Calif. Acad. Sci. 134: 53–55.

    Google Scholar 

  • LOVE, R.M. 1970. The chemical biology of fishes. Academic Press, New York.

    Google Scholar 

  • LøVTRUP, S. 1977. The phylogeny of vertebrata. John Wiley and Sons, London.

    Google Scholar 

  • MAETZ, J. 1974. Aspects of adaptation to hypo-osmotic and hyperosmotic environments. pp. 1–167 In Malins, D.C., and J.R. Sargent [eds.] Biochemical and biophysical perspectives in marine biology, vol. 1. Academic Press, New york.

    Google Scholar 

  • MAYR, E. 1944. Wallace’s line in the light of recent Zoogeographic studies. Quart. Rev. Biol. 19: 1–14.

    Article  Google Scholar 

  • MCINERNEY, J.E. 1974. Renal sodium reabsorption in the hagfish, Eptatretus stouti. Comp. Biochem. Physiol. 49A: 273–280.

    Article  Google Scholar 

  • MOSS, M.L. 1968. The origin of vertebrate calcified tissues. Nobel Symp. 4: 359–371.

    Google Scholar 

  • MUNZ, F.W., and W.N. MCFARLand. 1964. Regulatory function of a primitive vertebrate kidney. Comp. Biochem. Physiol. 13: 381–400.

    CAS  Google Scholar 

  • MYERS, G.S. 1938. Freshwater fishes and West Indian zoogeography. Smithsonian Rep. 1937: 339–364.

    Google Scholar 

  • MYERS, G.S. 1949. Salt tolerance of freshwater groups in relation to Zoogeographic problems. Bijdr. Dierk. 28: 315–322.

    Google Scholar 

  • NANCOLLAS, G.H., and B. TOMAZIK. 1974. Growth of calcium phosphate on hydroxyapatite crystals: effect of supersaturation and ionic medium. J. phys. Chem. 78: 2218–2225.

    Article  CAS  Google Scholar 

  • NELSON, G.J. 1970. Outline of a theory of comparative biology. Syst. Zool. 19: 373–384.

    Article  PubMed  CAS  Google Scholar 

  • PANG, P.K.T., R.W. GRIFFITH, and J.W. ATZ. 1977. Osmoregulation in elasmobranchs. Amer. Zool. 17: 365–377.

    CAS  Google Scholar 

  • PICKFORD, G.E., and F.B. GRANT. 1967. Serum osmolality in the coelacanth, Latimeria chalumnae: urea retention and ion regulation. Science 155: 568–570.

    Article  PubMed  CAS  Google Scholar 

  • POTTS, W.T.W., and G. PARRY. 1963. Osmotic and ionic regulation in animals. Pergamon Press, Oxford.

    Google Scholar 

  • PROSSER, C.L. [ed.]. 1973. Comparative animal physiology. W.B. Saunders Co. Philadelphia, Penn.

    Google Scholar 

  • READ, L.J. 1968. A study of ammonia and urea excretion in the fresh-water-adapted form of the Pacific lamprey, Entosphenus tridentatus. Comp. Biochem. Physiol. 26: 455–466.

    Article  PubMed  CAS  Google Scholar 

  • READ, L.J. 1971. The presence of high ornithine-urea cycle enzyme activity in the teleost, Opsanus tau. Comp. Biochem. Physiol. 39A: 409–413.

    Google Scholar 

  • READ, L.J. 1975. Absence of ureogenic pathways in liver of the hagfish, Bdellostoma cirrhatum. Comp. Biochem. Physiol. 51B: 139–141.

    Google Scholar 

  • REPETSKI, J.E. 1978. A fish from the upper Cambrian of North America. Science 200: 529–531.

    Article  PubMed  CAS  Google Scholar 

  • ROBERTSON, J.D. 1957. The habitat of the earliest vertebrates. Biol. Rev. 32: 156–187.

    Article  Google Scholar 

  • ROBERTSON, J.D. 1976. Chemical composition of the body fluids and muscle of the hagfish Myxine glutinosa and the rabbitfish Chimaera monstrosa. J. Zool. (Lond.) 178: 261–277.

    Article  Google Scholar 

  • ROMER, A.S. 1966. Vertebrate paleontology, 3rd ed. Universty of Chicago Press, Chicago, Ill.

    Google Scholar 

  • ROMER, A.S., and B.H. GROVE. 1935. Environment of the early vertebrates. Amer. Midl. Nat. 16: 805–856.

    Article  Google Scholar 

  • SCHEER, B. 1964. The uses of comparative physiology. pp. 101–117 In Leone, C.A. [ed.]. Taxonomic biochemistry and serology. The Ronald Press, New York.

    Google Scholar 

  • SIMPSON, G.G. 1960. Principles of animal taxonomy. Columbia University Press, New York.

    Google Scholar 

  • SMITH, H.W. 1930. The absorption and excretion of water and salts by marine teleosts. Amer. J. Physiol. 93: 480–505.

    CAS  Google Scholar 

  • SMITH, H.W. 1932. Water regulation and its evolution in the fishes. Quart. Rev. Biol. 7: 1–26.

    Article  CAS  Google Scholar 

  • SMITH, H.W. 1959. From fish to philosopher. CIBA edition, CIBA Pharmaceutical Products Inc., Summit, New Jersey.

    Google Scholar 

  • THORSON, T.B., C.M. COWAN, and D.E. WATSON. 1967. Potamotrygon spp.: elasmobranchs with low urea content. Science 158: 375–377.

    Article  PubMed  CAS  Google Scholar 

  • THORSON, T.B., and D.E. WATSON. 1975. Reassignment of the African freshwater stingray, Potamotrygon garonaensis, to the genus Dasyatis, on physiologic and morphologic grounds. Copeia 1975: 701–712.

    Article  Google Scholar 

  • YANCEY, P.H., and G.N. SOMERO. 1980. Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J. exp. Zool. 212: 205–213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Griffith, R.W. (1985). Habitat, Phylogeny and the Evolution of Osmoregulatory Strategies in Primitive Fishes. In: Foreman, R.E., Gorbman, A., Dodd, J.M., Olsson, R. (eds) Evolutionary Biology of Primitive Fishes. NATO ASI Series, vol 103. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9453-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9453-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9455-0

  • Online ISBN: 978-1-4615-9453-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics