Skip to main content

On Urea Formation in Primitive Fishes

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 103))

Abstract

In 1828, Friedrich Wöhler obtained urea by heating ammonium cyanate, this being the first deliberate extracorporeal synthesis of an organic compound by man. A century passed before Krebs and Henseleit (1932) demonstrated the biosynthesis of urea by mammalian liver through a process they termed the “ornithine cycle”. It is fitting and historically instructive to note that between these two scientific achievements Salkowski (1877–78) provided the lead article in Hoppe-Seyler’s new journal, his Zeitschrift für physiologische Chemie’, “On the process of urea formation in animals and the influence on this by ammonium salts.” Now, somewhat more than a half-century since the discovery of the ornithine cycle, we are still working on the details of how it operates. This cycle, which we will refer to here as the ornithine-urea cycle (reasons for which will become evident later), has been, and continues to be, the framework for a legion of studies in comparative biochemistry and physiology.

I can make urea without the necessity of a kidney . . . Letter from Wöhler to Berzelius, Feb. 22, 1828 (Hurt, 1978).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • ANDERSON, P.M. 1980. Glutamine- and L-acetyl-glutamate-dependent carbamoyl phosphate synthetase in elasmobranchs. Science 208: 291–293.

    Article  PubMed  CAS  Google Scholar 

  • ANDERSON, P.M. 1981. Purification and properties of the glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from liver of Squalus acanthias. J. biol Chem. 256: 12228–12238.

    PubMed  CAS  Google Scholar 

  • BALDWIN, E. 1960. Ureogenesis in elasmobranch fishes. Comp. Biochem. Physiol. 1: 24–37.

    Article  CAS  Google Scholar 

  • BROWN, G.W., JR. 1962. Urea cycle and cellular deoxyribonucleic acid content. Nature 194: 1279–1280.

    Article  CAS  Google Scholar 

  • BROWN, G.W., JR. 1964a. Metabolism of Amphibia, pp. 1–98 In Moore, J.A. [ed.] Physiology of the Amphibia. Academic Press, New York.

    Google Scholar 

  • BROWN, G.W., JR. 1964b. Urea synthesis in elasmobranchs. pp. 407–416 In Leone, C.A. [ed.] Taxonomic biochemistry and serology. Ronald Press, New York.

    Google Scholar 

  • BROWN, G.W., JR. 1970. Some evolutionary aspects of urea biosynthesis, pp. 3–14 In Schmidt-Nielsen, B., and D.W.S. Kerr [eds.] Urea and the kidney. Excerpta Medica Foundation, Amsterdam.

    Google Scholar 

  • BROWN, G.W., JR., and S.G. Brown. 1967. Urea and its formation in coelacanth liver. Science 155: 570–573.

    Article  PubMed  CAS  Google Scholar 

  • BROWN, G.W., JR., and P.P. Cohen. 1959. I. Methods for the quantitative assay of urea cycle enzymes in liver. J. biol. Chem. 234: 1769–1774.

    PubMed  CAS  Google Scholar 

  • BROWN, G.W., JR., and P.P. COHEN. 1960. Comparative biochemistry of urea synthesis. 3. Activities of urea-cycle enzymes in various higher and lower vertebrates. Biochem. J. 75: 82–91.

    PubMed  CAS  Google Scholar 

  • BROWN, G.W., JR., W.R. BROWN, and P.P. COHEN. 1959. Comparative biochemistry of urea synthesis. II. Levels of urea cycle enzymes in metamorphosing Rana catesbeiana tadpoles. J. biol. Chem. 234: 1775–1780.

    PubMed  CAS  Google Scholar 

  • BROWN, G.W., JR., J. JAMES, R. J. HENDERSON, W.N. THOMAS, R.O. ROBINSON, A.L. THOMPSON, E. BROWN, and S.G. BROWN. 1966. Uricolytic enzymes in the liver of the dipnoan Protopterus aethiopicus. Science 153: 1653–1654.

    Article  PubMed  CAS  Google Scholar 

  • CAMPBELL, J.W. 1961. Studies on tissue arginase and ureogenesis in the elasmobranch, Mustelus canis. Arch. Biochem. Biophys. 93: 448–455.

    Article  PubMed  CAS  Google Scholar 

  • CAMPBELL, J.W. 1965. Arginine and urea biosynthesis in the land planarian: its significance in biochemical evolution. Nature 208: 1299–1301.

    Article  PubMed  CAS  Google Scholar 

  • CARLISKY, N.J., and A. BARRIO. 1972. Nitrogen metabolism of the South American lungfish, Lepidosiren paradoxa. Comp. Biochem. Physiol. 41B: 857–873.

    Google Scholar 

  • CASEY, C.A., and P.M. ANDERSON. 1982. Subcellular location of glutamine synthetase and urea cycle enzymes in liver of the spiny dogfish (Squalus acanthias). J. biol. Chem. 257: 8449–8453.

    PubMed  CAS  Google Scholar 

  • CASEY, C.A., and P.M. ANDERSON. 1983. Glutamine- and N-acetyl-L-glutamate- dependent carbamoyl phosphate synthetase from Micropterus salmoides. J. biol. Chem. 258: 8723–8732.

    PubMed  CAS  Google Scholar 

  • CIMINO, M.C., and G.F. BAHR. 1973. The nuclear DNA content and chromatin ultrastructure of the coelacanth, Latimeria chalumnae. J. Cell Biol. 59: 55A.

    Google Scholar 

  • CIMINO, M.C., and G.F. BAHR. 1974. The nuclear DNA content and chromatin ultrastructure of the coelacanth Latimeria chalumnae. Exp. Cell Res. 88: 263–272.

    Article  PubMed  CAS  Google Scholar 

  • COHEN, P.P., and G.W. BROWN, JR. 1960. Ammonia metabolism and urea biosynthesis, pp. 161–244 In Florkin, M., and H.S. Mason [eds.] Comparative biochemistry, vol. 2. Academic Press, New York.

    Google Scholar 

  • CVANCARA, V.A. 1969. Comparative study of liver uricase activity in freshwater teleosts. Comp. Biochem. Physiol. 28: 725–732.

    Article  CAS  Google Scholar 

  • CVANCARA, V.A. 1974. Liver carbamyl phosphate synthetase in the primitive fresh-water bony fishes (Chondrostei, Holostei). Comp. Biochem. Physiol. 49B: 785–787.

    Google Scholar 

  • FICKEISEN, D.H., and G.W. BROWN, JR. 1977. D-Amino acid oxidase in various fishes. J. Fish Biol. 10: 457–465.

    Article  CAS  Google Scholar 

  • FORSTER, R.P., and L. GOLDSTEIN. 1966. Urea synthesis in the lungfish: relative importance of purine and ornithine cycle pathways. Science. 153:1650–1652.

    Article  PubMed  CAS  Google Scholar 

  • FUNKHOUSER, D., L. GOLDSTEIN, and R.P. FORSTER. 1972. Urea biosynthesis in the South American lungfish, Lepidosiren paradoxa: relation to its ecology. Comp. Biochem. Physiol. 41A: 439–443.

    Article  Google Scholar 

  • GOLDSTEIN, L., and R.P. FORSTER. 1965. The role of uricolysis in the production of urea by fishes and other aquatic vertebrates. Comp. Biochem. Physiol. 14: 567–576.

    Article  PubMed  CAS  Google Scholar 

  • GOLDSTEIN, L., and R.P. FORSTER. 1970. Nitrogen metabolism in fishes, pp. 495–578 In Campbell, J.W. [ed.] Comparative biochemistry of nitrogen metabolism, vol. 2. Academic Press, London

    Google Scholar 

  • GOLDSTEIN, L., and R.P. FORSTER. 1971. Urea biosynthesis and excretion in freshwater and marine elasmobranchs. Comp. Biochem. Physiol. 39B: 415–421.

    Google Scholar 

  • GOLDSTEIN, L., S. HARLEY-DEWITT, and R.P. FORSTER. 1973. Activities of ornithine-urea cycle enzymes and of trimethylamine oxidase in the coelacanth, Latimeria chalumnae. Comp. Biochem. Physiol. 44B: 357–362.

    Google Scholar 

  • GRIFFITH, R.W., B.L. UMMINGER, B.F. GRANT, P.K.T. PANG, L. GOLDSTEIN, and G.E. PICKFORD. 1976. Composition of bladder urine of the coelacanth, Latimeria chalumnae. J. exp. Zool. 196: 371–380.

    Article  CAS  Google Scholar 

  • GRISOLIA, S, R. BAGUEANA, and F. MAYOR, [eds.] 1976. The urea cycle. John Wiley and Sons, New York. 579 pp.

    Google Scholar 

  • HINEGARDNER, R. 1976. The cellular DNA content of sharks, rays and some other fishes. Comp. Biochem. Physiol. 55: 367–370.

    Article  CAS  Google Scholar 

  • HORWICH, A.L., W.A. FENTON, K.R. WILLIAMS, F. KALOUSEK, J.P. KRAUS, R.F. DOOLITTLE, W. KöNIGSBERG, and L.E. ROSENBERG. 1984. Structure and expression of a complementary DNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. Science 224: 1068–1074.

    Article  PubMed  CAS  Google Scholar 

  • HUGGINS, A.K., G. SKUTSCH, and E. BALDWIN. 1969. Ornithine-urea cycle enzymes in teleostean fish. Comp. Biochem. Physiol. 28: 587–602.

    Article  CAS  Google Scholar 

  • HUNTER, A., and J. DAUPHINEE. 1924–25. Quantitative studies concerning the distribution of arginase in fishes and other vertebrates. Proc. R. Soc. (Lond.) B17: 227–242.

    Google Scholar 

  • HURT, H. 1978. In Organic division dedicates program to Friedrich Wöhler. Chem. Eng. News. 56: 19.

    Google Scholar 

  • JANSSENS, P.A. 1964. The metabolism of the aestivating African lungfish. Comp. Biochem. Physiol. 11: 105–117.

    Article  PubMed  CAS  Google Scholar 

  • JANSSENS, P.A., and P.P. COHEN. 1966. Ornithine-urea cycle enzymes in the African lungfish, Protopterus aethiopicus. Science 152: 358–359.

    Article  PubMed  CAS  Google Scholar 

  • JONES, M.E., L. SPECTOR, and F. LIPMANN. 1955. Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77: 819–820.

    Article  CAS  Google Scholar 

  • KETOLA, G. 1977. Amino acids, pp. 411–412 In Rechcigl, M., Jr. [ed.] CRC handbook series in nutrition and food. Section D: nutrition requirements, vol. 1. CRC Press. Cleveland, Ohio. 1: 411–412.

    Google Scholar 

  • KREBS, H.A., and K. HENSELEIT. 1932. Untersuchungen über Harnstoffbildung im Tierkörper. Z. physiol. Chem. 210: 33–66.

    Article  CAS  Google Scholar 

  • LOVE, R.M. 1970. Chemical biology of fishes. Academic Press, New York. 547 pp.

    Google Scholar 

  • LOVE, R.M. 1980. Chemical biology of fishes, vol. 2. Academic Press, New York. 943 pp.

    Google Scholar 

  • LOVERAGE, J.P. 1970. Observations on nitrogenous excretion and water relations of Chiromantis xerampelina (Amphibia, Anura). Arnoldia (Rhodesia) 5: 1–6.

    Google Scholar 

  • LOVERAGE, J.P. 1970. Observations on nitrogenous excretion and water relations of Chiromantis xerampelina (Amphibia, Anura). Biol Abst. 52: 8726. (1971) No. 87465.

    Google Scholar 

  • MAYHALL, W.S.T., and G.W. BROWN, JR. 1967. Ornithine carbamoyltransferase activity in toadfish liver. Texas Rep. Biol. Med. 25: 488–489.

    Google Scholar 

  • MOYLE, V. 1949. Nitrogenous excretion in chelonian reptiles. Biochem. J. 44: 581–584.

    CAS  Google Scholar 

  • NOVAK, A. 1971. Boerhaave: Three chairs to oblivion. Bioscience 21: 479–482.

    Article  Google Scholar 

  • PICKFORD, G.E., and F.B. GRANT. 1967. Serum osmolality in the coelacanth, Latimeria chalumnae: urea retention and ion regulation. Science 155: 568–570.

    Article  PubMed  CAS  Google Scholar 

  • READ, L.J. 1968. A study of ammonia and urea production and excretion in the freshwater-adapted form of the Pacific lamprey, Entosphenus tridentatus. Comp. Biochem. Physiol. 26: 455–466.

    Article  PubMed  CAS  Google Scholar 

  • READ, LJ. 1971. The presence of high ornithine-urea cycle enzyme activity in the teleost Opsanus tau. Comp. Biochem. Physiol. 39B: 409–413.

    Google Scholar 

  • READ, L.J. 1975. Absence of ureogenic pathways in liver of the hagfish Bdellostoma cirrhatum (Eptatretus cirratum). Comp. Biochem. Physiol. 51B: 139–141.

    Google Scholar 

  • ROBINSON, E.S., I.C. POTTER, and N.B. ATKIN. 1975. The nuclear DNA content of lampreys. Experientia. 31: 912–913.

    Article  PubMed  CAS  Google Scholar 

  • ROSENBERG, L.E., F. KALOUSEK, and M.D. ORSULAK. 1983. Biogenesis of ornithine transcarbamylase in spfash mutant mice: two cytoplasmic precursors, one mitochondrial enzyme. Science 222: 426–428.

    Article  PubMed  CAS  Google Scholar 

  • SALKOWSKI, E. 1877–1879. Über den Vorgang der Harnstoffbildung im Tierkörper und den Einfluss der Ammoniaksalze auf denselben. Z. Physiol. Chem. 1: 1–59.

    Google Scholar 

  • SALVATORE, F., V. ZAPPIA, and C. COSTA. 1965. Comparative biochemistry of deamination of L-amino acids in elasmobranch and teleost fish. Comp. Biochem. Physiol. 16: 303–309.

    Article  PubMed  CAS  Google Scholar 

  • SCHLEE, D., and H. REINBOTHE. 1963. Über eine funktionelle Inversion der C-Atome von Glycine im Purinstoff Wechsel. Phytochemistry. 2: 231–236.

    Article  CAS  Google Scholar 

  • SCHMIDT-NIELSEN, B., and D.W.S. KERR. [eds.] 1970. Urea and the kidney. Excerpta Medica Foundation. Amsterdam. 494 pp.

    Google Scholar 

  • SHOEMAKER, V.H., and L.L. McCLANAHAN, JR. 1975. Evaporative water loss, nitrogen excretion and osmoregulation in phyllomedusine frogs. J. comp. Physiol. 100: 331–345.

    CAS  Google Scholar 

  • STAEDELER, G., and FR. TH. FRERICHS. 1858, X. Über das Vorkommen von Harnstoff, Taurin und Scyllit in den Organen der Plagiostomen. J. Prakt. Chem. 73: 48–55.

    Article  Google Scholar 

  • THOMSON, K.S., J.G. GALL, and L.W. COGGINS. 1973. Nuclear DNA content of coelacanth erythrocytes. Nature 241: 126.

    Article  PubMed  CAS  Google Scholar 

  • THORSON, T.B. 1970. Freshwater stingrays, Potamotrygon spp.: failure to concentrate urea when exposed to saline medium. Life Sci. 9: 893–900.

    Article  CAS  Google Scholar 

  • THORSON, T.B., C.M. COWAN, and D.E. WATSON. 1967. Potamotrygon spp.: elasmobranchs with low urea content. Science 158: 375–377.

    Article  PubMed  CAS  Google Scholar 

  • TRAMELL, T.B., and J.W. CAMPBELL. 1970. Carbamyl phosphate synthesis in a landsnail, Strophocheilus oblongus. J. biol. Chem. 245: 6634–6641.

    PubMed  CAS  Google Scholar 

  • VELLAS, F., and A. SERFATY. 1974. L’ammoniaque et.l’urée chez un téléostéen d’eau douce: La carp (Cyprinus carpió L.). J. Physiol. (Paris) 68: 591–614.

    CAS  Google Scholar 

  • WATTS, D.C., and R.L. WATTS. 1966. Carbamoyl phosphate synthetase in the Elasmobranchii: osmoregulatory function and evolutionary implications. Comp. Biochem. Physiol. 17: 785–798.

    Article  PubMed  CAS  Google Scholar 

  • WATTS, R.L., and D.C. WATTS. 1974. Nitrogen metabolism in fishes, pp. 369–466 In Florkin, M., and B.T. Scheer [eds.] Chemical zoology, vol. 8. Deuterostomians, cyclostomes and fishes. Academic Press, New York.

    Google Scholar 

  • WEBB, J.T., and G.W. BROWN, JR. 1976. Some properties and occurrence of glutamine synthetase in fish. Comp. Biochem. Physiol. 54B: 171–175.

    Google Scholar 

  • WEBB, J.T., and G.W. BROWN, JR. 1980. Glutamine synthetase: assimilatory role in liver as related to urea retention in marine Chondrichthyes. Science 208:293–295.

    Article  PubMed  CAS  Google Scholar 

  • WEKELL, M.M.B., and G.W. BROWN, JR. 1973. Ornithine aminotransferase of fishes. Comp. Biochem. Physiol. 46B: 779–795.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Brown, G.W., Brown, S.G. (1985). On Urea Formation in Primitive Fishes. In: Foreman, R.E., Gorbman, A., Dodd, J.M., Olsson, R. (eds) Evolutionary Biology of Primitive Fishes. NATO ASI Series, vol 103. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9453-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9453-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9455-0

  • Online ISBN: 978-1-4615-9453-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics