Skip to main content

Respiration in Phyletically Ancient Fishes

  • Chapter
Book cover Evolutionary Biology of Primitive Fishes

Part of the book series: NATO ASI Series ((NSSA,volume 103))

Abstract

Physiologists studying evolutionary trends in fishes are restricted to examination of extant species. This makes the identification of ‘primitive’ vs. ‘derived’ physiological characters extremely difficult, particularly since physiological processes at the organismal level appear so labile in both ontogenetic and phylogenetic contexts. Unlike the extensive morphological knowledge based upon both the fossil record and dissection of extant species, there is but scant physiological information on respiratory processes in phyletically ancient fishes. We thus have interpreted ‘primitive’ rather broadly in order best to convey the tremendous diversity of early evolutionary trends in gas exchange mechanisms exhibited by fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  • ADINOLFI, M., G. CHIEFFI, and M. SINISCALCO. 1959. Haemoglobin pattern of the cyclostome, Petromyzon platteri during the course of development. Nature 184: 1325–1326

    PubMed  Google Scholar 

  • BANNAI, S., Y. SUGITA, and Y. YONEYAMA. 1972. Studies on haemoglobin from the hagfish, Eptatretus bürgert J. biol. Chem. 247: 505–510.

    PubMed  CAS  Google Scholar 

  • BAUER, C., U. ENGELS, and S. PALEUS. 1975. Oxygen binding to haemoglobins of the primitive vertebrate Myxine glutinosa. L. Nature 256: 66–68.

    PubMed  CAS  Google Scholar 

  • BEAMISH, F.W.H. 1973. Oxygen consumption of adult Petromyzon marinus in relation to body weight and temperature. J. Fish. Res. Bd. Can. 30: 1367–1370.

    Google Scholar 

  • BIRD, D., P. LUTZ, and I. POTTER. 1976. Oxygen dissociation curves of the blood of larval and adult lampreys (Lampetra fluviatilis). J. exp. Biol. 65: 449–458.

    PubMed  CAS  Google Scholar 

  • BISHOP, I.R., and G.E.H. FOXON. 1968. The mechanism of breathing in the South American lungfish Lepidosiren paradoxal radiological study. J. Zool. (Lond.) 154: 263–272.

    Google Scholar 

  • BRIEHL, R.W. 1963. The relation between the oxygen equilibrium and aggregation of subunits in lamprey haemoglobin. J. biol. Chem. 238: 2361–2366.

    CAS  Google Scholar 

  • BUGGE, J. 1960. The heart of the African lungfish, Protopterus. Vidensk. Meddr dansk naturh. Foren. 123: 193–210.

    Google Scholar 

  • BURGGREN, W.W. 1978. Gill ventilation in the sturgeon, Acipenser transmontanus: unusual adaptations for bottom dwelling. Respir. Physiol. 34: 153–170.

    PubMed  CAS  Google Scholar 

  • BURGGREN, W.W. 1982. “Air gulping” improves blood oxygen transport during aquatic hypoxia in the goldfish Carassius auratus. Physiol. Zool. 55: 327–334.

    Google Scholar 

  • BURGGREN, W., J. DUNN, and K. BARNARD. 1979. Branchial circulation and gill morphometries in the sturgeon Acipenser transmontanus, an ancient chondrostean fish. Can. J. Zool. 59: 2160–2170.

    Google Scholar 

  • BURGGREN, W.W., and M.S. HASWELL. 1979. Aerial CO2 excretion in the obligate air breathing fish, Trichogaster trichopterus: a role for carbonic anhydrase. J. exp. Biol. 82: 215–225.

    CAS  Google Scholar 

  • BURGGREN, W.W., and D.J. RandALL. 1978. Oxygen uptake and transport during hypoxic exposure in the sturgeon, Acipenser transmontanus. Resp. Physiol. 34: 171–183.

    CAS  Google Scholar 

  • BYCZKOWSKA-SMYK, W. 1962. Vascularization and size of the respiratory surface in Acipenser stellatus. Respir. Physiol. 34: 171–183.

    Google Scholar 

  • CARTER, G.S., and L.C. BEADLE. 1931. The fauna of the swamps of the Paraguayan Chaco in relation to its environment. II. Respiratory adaptations in the fishes. J. Linn. Soc. (Lond.) 37: 327–366.

    Google Scholar 

  • CHAPMAN, C.B., D. JENSEN, and K. WILDENTHAL. 1963. On circulatory control mechanisms in the Pacific hagfish. Circ. Res. 12: 427–440.

    CAS  Google Scholar 

  • CLARIDGE, P.N., and I.C. POTTER. 1975. Oxygen consumption, ventilator frequency and heart rate of lampreys, Lampetra fluviatilis, during their spawning run. J. exp. Biol. 63: 193–206.

    PubMed  CAS  Google Scholar 

  • DAXBOECK, C., D.K. BARNARD, and D.J. RandALL. 1981. Functional morphology of the gills of the bowfin, Amia calva, with special reference to their significance during air exposure. Respir. Physiol. 43: 349–364.

    PubMed  CAS  Google Scholar 

  • DELANEY, R.G, S. LAHIRI, and A.P. FISHMAN. 1974. Aestivation of the African lungfish, Protopterus aethiopicus: cardiovascular and respiratory functions. J. exp. Biol. 61: 111–128.

    PubMed  CAS  Google Scholar 

  • DELANEY, R.G., and A.P. FISHMAN. 1977. Analysis of lung ventilation in the aestivating lungfish Protopterus aethiopicus. Amer. J. Physiol. 233: R181-R187.

    PubMed  CAS  Google Scholar 

  • DELANEY, R.G., S. LAHIRI, R. HAMILTON, and A.P. FISHMAN. 1974. Acid-base balance and plasma composition in the aestivating lungfish, Protopterus. Amer. J. Physiol. 232: R10-R17.

    Google Scholar 

  • DUBOIS, R. 1892. Du mechanisme respiratoire du Dipnoiques. Annls. Soc. Linn. (Lyon) 36: 65.

    Google Scholar 

  • FäNGE, R. 1972. The circulatory system, pp. 241–259 In Hardisty, M.W., and I.C. Potter [eds.] The biology of lampreys, vol. 2. Academic Press, London.

    Google Scholar 

  • FARRELL, A. and D. RandALL. 1978. Air-breathing mechanics in two Amazonian teleosts, Arapaima gigas and Hoplerythrinus unitaeniatus. Can. J. Zool. 56: 939–945.

    Google Scholar 

  • FEDER, M.E., and W. BURGGREN. 1985. Cutaneous gas exchange in vertebrates: design, patterns, control and implications. Biol. Rev. (in press).

    Google Scholar 

  • FISHMAN, A.F., R.G. DELANEY, P. LAURENT, and J.P. SZIDON. 1985. Blood shunting in the lungfish and humans. In Johansen, K., and W. Burggren [eds.] Cardiovascular shunts: phylogenetic, ontogenetic and clinical aspects. Munksgaard, Copenhagen (in press).

    Google Scholar 

  • GOODMAN, M., G.W. MOORE, and G. MATSUDA. 1975. Darwinian evolution in the geneology of haemoglobin. Nature 253: 603–608.

    PubMed  CAS  Google Scholar 

  • GREENWOOD, P.H. 1958. Reproduction in the East African lungfish Protopterus aethiopicus. Proc. Zool. Soc. (Lond.) 130: 547–567.

    Google Scholar 

  • GREENWOOD, P.H., and K.F. LIEM. 1984. Aspiratory respiration in Arapaima gigas (Teleostei, Osteoglossomorpha): a reappraisal. J. Zool. (Lond.) 203: 411–425.

    Google Scholar 

  • GRIGG, C. 1965. Studies of the Queensland lungfish Neoceratodus forsteri (Krefft). I. Anatomy, histology and functioning of the lung. Aust. J. Zool. 13: 243–253.

    Google Scholar 

  • HANS, M., and Z. TABENCKA. 1938. Über die Blutgefässe der Haut von Myxine glutinosa L. Bull. Acad. Pol. Sci. 11: 69–77.

    Google Scholar 

  • HARDISTY, M.W. 1979. The biology of the cyclostomes. Chapman and Hall, London. 428 p.

    Google Scholar 

  • HEISLER, N. 1984. Acid-base regulation in fishes, pp. 315–400 In Hoar, W.S., and D.J. Randall [eds.] Fish physiology, vol. X, part A. Academic Press, London.

    Google Scholar 

  • HUGHES, G.M. 1984. General anatomy of the gills, pp. 1–72 In Hoar, W.S., and D.J. Randall [eds.] Fish physiology, vol. X, part A. Academic Press, London.

    Google Scholar 

  • HUGHES, G.M., and C. BALLINTIJN. 1965. The muscular basis of the respiratory pumps in the dogfish (Scyliorhinus canicula). J. Exp. Biol. 43: 363–383.

    Google Scholar 

  • HUGHES, G., and Y. ITAZAWA. 1972. The effect of temperature on the respiratory function of coelacanth blood. Experientia 28: 1247.

    PubMed  CAS  Google Scholar 

  • HUGHES, G.M., and M. MORGAN. 1973. The structure of fish gills in relation to their respiratory function. Biol. Rev. 48: 419–475.

    Google Scholar 

  • HUGHES, G.M., and S. WOOD. 1974. Respiratory properties of the blood of the thornback ray. Experientia 30: 167–168.

    Google Scholar 

  • JARVIK, E. 1980. Basic structure and evolution of vertebrates, vol. 1. Academic Press, London.

    Google Scholar 

  • JENSEN, D. 1965. The aneural heart of the hagfish. Ann. N.Y. Acad. Sci. 127: 443–458.

    PubMed  CAS  Google Scholar 

  • JENSEN, D. 1966. The hagfish. Sci. Amer. 214: 82–90.

    PubMed  CAS  Google Scholar 

  • JOHANSEN, K. 1960. Circulation in the hagfish, Myxine glutinosa L. Biol. Bull. 118: 289–295.

    Google Scholar 

  • JOHANSEN, K. 1963. The cardiovascular system of Myxine glutinosa L. In Brodai, A., and R. Fänge [eds.] The biology of Myxine. Universitetsforlaget, Oslo.

    Google Scholar 

  • JOHANSEN, K. 1970. Air breathing in fishes, pp. 361–408 In Hoar, W.S. and D.J. Randall [eds.] Fish physiology, vol. IV. Academic Press, London.

    Google Scholar 

  • JOHANSEN, K. 1985. A phylogenetic overview of cardiovascular shunts. In Johansen, K., and W. Burggren [eds.] Cardiovascular shunts: phylogenetic, ontogenetic and clinical aspects. Munksgaard, Copenhagen (in press).

    Google Scholar 

  • JOHANSEN, K., and W. BURGGREN. 1980. Cardiovascular function in lower vertebrates, pp. 61–118 In Bourne, G.H. [ed.] Hearts and heart-like organs, vol. 1. Academic Press, London.

    Google Scholar 

  • JOHANSEN, K., HANSON, D., and C. LENFANT. 1970. Respiration in a primitive air breather, Amia calva. Respir. Physiol. 9: 162–174.

    PubMed  CAS  Google Scholar 

  • JOHANSEN, K., and C. LENFANT. 1967. Respiratory function in the South American lungfish, Lepidosiren paradoxa (Fitz.). J. exp. Biol. 46: 205–218.

    PubMed  CAS  Google Scholar 

  • JOHANSEN, K., and C. LENFANT. 1972. A comparative approach to the adaptability of O2 -Hb affinity. Proc. A. Benzon Symp. 4: 750–780.

    Google Scholar 

  • JOHANSEN, K., C. LENFANT, and D. HANSON. 1968. Cardiovascular dynamics in the lungfish. Z. vergl. Physiol. 59: 157–186.

    Google Scholar 

  • JOHANSEN, K., C. LENFANT, and D. HANSON. 1973. Gas exchange in the lamprey, Entosphenus tridentata. Comp. Biochem. Physiol. 44A: 107–119.

    Google Scholar 

  • JOHANSEN, K., J.P. LOMHOLT, and G.M.O. MALOIY. 1976. Importance of air and water breathing in relation to size of the African lungfish Protopterus amphibius Peters. J. exp. Biol. 65: 395–399.

    Google Scholar 

  • JOHANSEN, K., G. LYKKEBOE, R. WEBER, and G. MALOIY. 1976. Respiratory properties of blood in awake and estivating lungfish, Protopterus amphibius. Respir. Physiol. 27: 335–345.

    PubMed  CAS  Google Scholar 

  • JOHANSEN, K., C. MANGUM, and R. WEBER. 1978. Reduced blood O2 affinity associated with air breathing in osteoglossid fishes. Can. J. Zool. 56: 891–897.

    CAS  Google Scholar 

  • JOHANSEN, K., and R. STRAHAN. 1963. The respiratory system of Myxine glutinosa, pp. 352–371 In Brodai, A. and R. Fänge [eds.] The biology of Myxine. Universitetsforlaget, Oslo.

    Google Scholar 

  • JOHANSEN, K., and R. WEBER. 1976. On the adaptability of haemoglobin function to environmental conditions. Zool. Persp. exp. Biol. 1.

    Google Scholar 

  • JOHNELS, A.G., and G.S.O. SVENSSON. 1954. On the biology of Protopterus annectens. Arkiv f. Zool. 7: 131–158.

    Google Scholar 

  • KOROLEWA, N.W. 1964. Water respiration of lamprey and survival in a moist atmosphere. Isv. vses. nauchno-issled. Inst, ozern. rechn. ryb. Khoz. 58: 186–190 (in Russian).

    Google Scholar 

  • LAURENT, P. 1984. Gill internal morphology, pp. 73–184 In Hoar, W.S., and D.J. Randall [eds.] Fish physiology, vol. X, part A. Academic Press, London.

    Google Scholar 

  • LENFANT, C., and K. JOHANSEN. 1968. Respiration in the African lungfish Protopterus aethiopicus I. Respiratory properties of blood and normal patterns of breathing and gas exchange. J. exp. Biol. 49: 437–452.

    PubMed  CAS  Google Scholar 

  • LENFANT, C., K. JOHANSEN, and G.C. GRIGG. 1967. Respiratory properties of blood and pattern of gas exchange in the lungfish Neoceratodus forsten (Krefft). Respir. Physiol. 2: 1–12.

    Google Scholar 

  • LENFANT, C., K. JOHANSEN, and D. HANSON. 1970. Bimodal gas exchange and ventilation-perfusion relationships in lower vertebrates. Fed. Proc. 29: 1124–1129.

    PubMed  CAS  Google Scholar 

  • LEWIS, S.V. 1976. Respiration and gill morphology of the paired species of lampreys, Lampetra fluviatilis (L.) and Lampetra planeri (Bloch). Ph.D. thesis, University of Bath, U.K.

    Google Scholar 

  • LEWIS, S.V., and I.C. POTTER. 1976. Gill morphometries of the lampreys, Lampetra fluviatilis (L.) and Lampetra planeri (Bloch). Acta Zool. (Stockh.) 57: 103–112.

    Google Scholar 

  • LIEM, K. 1982. Larvae of air-breathing fishes as countercurrent flow devices in hypoxic environments. Science 211: 1177–1179.

    Google Scholar 

  • MACEY, D., and I.C. POTTER. 1982. The effect of temperature on the oxygen dissociation curves of whole blood of larval and adult lampreys (Geotria australis). J. exp. Biol. 97: 253–262.

    PubMed  CAS  Google Scholar 

  • MAGID, A. 1966. Breathing and function of the spiracles in Polypterus senegalus. Anim. Behav. 14: 530–533.

    PubMed  CAS  Google Scholar 

  • MANWELL, C. 1963. The blood proteins of cyclostomes. A study in phylogenetic and ontogenetic biochemistry, pp. 372–455 In Hardisty, M.W., and I.C. Potter [eds.] The biology of lampreys, vol. 2. Academic Press, London.

    Google Scholar 

  • MCMAHON, B. 1969. A functional analysis of the aquatic and aerial respiratory movements of an African lungfish, Protopterus aethiopicus, with references to the evolution of the lung-ventilation mechanism in vertebrates. J. exp. Biol. 51: 407–430.

    PubMed  CAS  Google Scholar 

  • MCMAHON, B. 1970. The relative efficiency of gaseous exchange across the lungs and gills of an African hmgfish Protopterus aethiopicus. J. exp. Biol. 52: 1–15.

    Google Scholar 

  • MUNZ, F.W., and R.W. MORRIS. 1965. Metabolic rate of the hagfish Eptatretus stouti (Lockington) 1878. Comp. Biochem. Physiol. 16: 1–5.

    PubMed  CAS  Google Scholar 

  • NAKAO, T., and K. UCHINOMIYA. 1978. A study on the blood vascular system of the lamprey gill filament. Amer. J. Anat. 151: 239–264.

    PubMed  CAS  Google Scholar 

  • NEILL, W.T. 1950. An estivating bowfin. Copeia 1950: 240.

    Google Scholar 

  • PERUTZ, M.F. 1969. The haemoglobin molecule. Proc. R. Soc. (Lond.) 173B: 113–140.

    Google Scholar 

  • PIIPER, J., and P. SCHEID. 1984. Model analysis of gas transfer in fish gills, pp. 230–262 In Hoar, W.S. and D.J. Randall [eds.] Fish physiology, vol. X, part A. Academic Press, London.

    Google Scholar 

  • POLL, N. 1962. XL Etude sur la structure adulte et la formation des sacs pulmonaires des Protoptères. Annls Mus. r. Afr. cent. Sér. 8vo. 103: 131–171.

    Google Scholar 

  • POTTER, I.C., and F.W.H. BEAMISH. 1978. Changes in haematocrit and haemoglobin concentrations during the life cycle of the anadromous sea lamprey, Petromyzon marinus L. Comp. Biochem. Physiol. 60A: 431–434.

    CAS  Google Scholar 

  • POTTER, I.C., and P.I. NICOL. 1968. Electrophoretic studies on the haemoglobin of Australian lampreys. Aust. J. exp. Biol. Med. Sci. 46: 639–641.

    PubMed  CAS  Google Scholar 

  • PURSER, L.G. 1926. Calamoichthys calabaricus J.A. Smith. Part I. The alimentary and respiratory system. Trans. R. Soc. (Edinb.) 54: 767–784.

    Google Scholar 

  • RAHN, H., K. RAHN, B.J. HOWELL, C. GANS, and S.M. TENNEY. 1971. Air breathing of the garfish, Lepisosteus osseus. Respir. Physiol. 11: 285–307.

    PubMed  CAS  Google Scholar 

  • RandALL, D.J. 1970. The circulatory system, pp. 133–172 In Hoar, W.S., and D.J. Randall [eds.] Fish physiology, vol. IV. Academic Press, London.

    Google Scholar 

  • RandALL, D.J. 1972. Respiration, pp. 287–306 In Hardisty, M.W., and I.C. Potter [eds.] The biology of lampreys, vol. 2. Academic Press, London.

    Google Scholar 

  • RandALL, D.J. 1984. Oxygen and carbon dioxide transfer across fish gills, pp. 263–314 In Hoar, W.S., and D.J. Randall [eds.] Fish physiology, vol. X, part A. Academic Press, London.

    Google Scholar 

  • RandALL, D.J., W.W. BURGGREN, A.P. FARRELL, and M.S. HASWELL. 1981a. The evolution of air breathing in vertebrates. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • RandALL, D.J., J.N. CAMERON, C. DAXBOECK, and N. SMATRESK. 1981b. Aspects of bimodal gas exchange in the bowfin, Amia calva L. (Actinopterygii: Amigormes). Respir. Physiol. 43: 339–348.

    PubMed  CAS  Google Scholar 

  • RETZIUS, G. 1890. Ueber Zellenteilung bei Myxine glutinosa. Biol. Foren. Stockh. Forhandl. 11: 50–90.

    Google Scholar 

  • RIGGS, A. 1972. The haemoglobins, pp. 261–286 In Hardisty, M.W., and I.C. Potter [eds.] The biology of lampreys, vol. 2. Academic Press, London.

    Google Scholar 

  • ROBERTSON, J.D. 1974. Osmotic and ionic regulation in cyclostomes. pp. 149–193 In Florkin, M, and B.T. Scheer [eds.] Chemical zoology, vol. 8. Academic Press, London.

    Google Scholar 

  • ROVAINEN, C.M., and M.H. SCHIEBER. 1975. Ventilation of larval lampreys. J. comp. Physiol. 104: 185–203.

    Google Scholar 

  • SACCA, R., and W.W. BURGGREN. 1982. Oxygen uptake in air and water in the air-breathing reedfish, Calamoichthys calabaricus: role of skin, gills and lungs. J. exp. Biol. 97: 179–186.

    PubMed  CAS  Google Scholar 

  • SCHEID, P., and J. PIIPER. 1976. Quantitative functional analysis of branchial gas transfer: theory and application to Scyliorhinus stellaris (Elasmobranchii). pp. 17–38 In Hughes, G.M. [ed.] Respiration of amphibious vertebrates. Academic Press, London.

    Google Scholar 

  • SHELTON, G. 1970. The regulation of breathing, pp. 293–359 In Hoar, W.S. and D.J. Randall [eds.] Fish Physiology, vol. 4. Academic Press, N.Y.

    Google Scholar 

  • SMATRESK, N., and J. CAMERON. 1982. Respiration and acid-base physiology of the spotted gar, a bimodal breather. I. Normal values and the response to severe hypoxia. J. exp. Biol. 96: 263–280.

    Google Scholar 

  • SMITH, H.W. 1930. Metabolism of the lungfish. J. biol. Chem. 88: 97–130.

    CAS  Google Scholar 

  • SMITH, H.W. 1931. Observations on the African lungfish Protopterus aethiopicus, and on evolution from water to land environments. Ecology 12: 164–181.

    Google Scholar 

  • SMITH, H.W. 1935. The metabolism of the lungfish. J. cell. comp. Physiol. 6: 43–67.

    CAS  Google Scholar 

  • STEFFENSEN, J.F., JOHANSEN, K., C.D. SINDBERG, J.H. SORENSEN, and J.L. MOOLER. 1984. Ventilation and oxygen comsumption in the hagfish, Myxine glutinosa L. J. exp. mar. Biol. Ecol. 84: 173–178.

    Google Scholar 

  • STRAHAN, R. 1958. The velum and respiratory current of Myxine, Acta Zool. (Stockh.) 16: 227–240.

    Google Scholar 

  • SWAN, H., and F.G. HALL. 1966. Oxygen-hemoglobin dissociation in Protopterus aethiopicus. Amer. J. Physiol. 210: 487–489.

    CAS  Google Scholar 

  • TAPPAN, H. 1974. Molecular oxygen and evolution, pp. 81–135 In Hayaishi, O. [ed.] Molecular oxygen in biology. North Holland/Elsevier, Amsterdam.

    Google Scholar 

  • WEBER, R., J. BOL, K. JOHANSEN, and S. WOOD. 1973. Physiochemical properties of coelacanth hemoglobin. Arch. Biochem. Biophys. 154: 96–105.

    PubMed  CAS  Google Scholar 

  • WEBER, R., G. LYKKEBOE, and K. JOHANSEN. 1975. Biochemical aspects of the adaptation of hemoglobin-oxygen affinity of eels to hypoxia. Life Sci. 17: 1345–1350.

    PubMed  CAS  Google Scholar 

  • WEBER, R., R. WELLS, and J. ROSSETTI. 1983. Allosteric interactions governing oxygen equilibria in the haemoglobin system of the spiny dogfish, Squalus acanthias. J. exp. Biol. 103: 109–120.

    PubMed  CAS  Google Scholar 

  • WEBER, R., B. SULLIVAN, J. BONAVENTURA, and C. BONAVENTURA. 1976. The hemoglobin system of the primitive fish, Amia calva: isolation and functional characterization of the individual hemoglobin components. Biochim. Biophys. Acta 434: 18–30.

    PubMed  CAS  Google Scholar 

  • WHITING, H.P., and Q. BONE. 1980. Ciliary cells in the epidermis of the larval Australian dipnoan, Neoceratodus. J. Linn. Soc. Lond. Zool. 68: 125–137.

    Google Scholar 

  • WOOD, S. 1980. Adaptation of red cell function to hypoxia and temperature in ectothermic vertebrates. Amer. Zool. 20: 163–172.

    CAS  Google Scholar 

  • WOOD, S., and K. JOHANSEN. 1972. Adaptation to hypoxia by increased HbO2 affinity and decreased red cell ATP concentration. Nature 237: 278–279.

    CAS  Google Scholar 

  • WOOD, S., K. JOHANSEN, and R. WEBER. 1972. Haemoglobin of the coelacanth. Nature 239: 283–285.

    CAS  Google Scholar 

  • YOUSON, J.H., and P.A. FREEMAN. 1976. Morphology of the gills of larval and parasitic adult sea lampreys, Petromyzon marinus. J. Morphol. 149: 73–104.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Burggren, W., Johansen, K., McMahon, B. (1985). Respiration in Phyletically Ancient Fishes. In: Foreman, R.E., Gorbman, A., Dodd, J.M., Olsson, R. (eds) Evolutionary Biology of Primitive Fishes. NATO ASI Series, vol 103. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9453-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9453-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9455-0

  • Online ISBN: 978-1-4615-9453-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics