Skip to main content

Receptor-Effector Coupling in Platelets: Roles of Guanine Nucleotides

  • Chapter
Mechanisms of Stimulus—Response Coupling in Platelets

Abstract

Platelet aggregation and degranulation are complex cellular responses initiated by interaction of physiological stimuli with specific plasma membrane receptors. Two immediate effects of the activation of stimulatory platelet receptors have been well documented» namely inhibition of adenylate cyclase1–3 and the cleavage of membrane phosphoinositides to diacylglycerol and inositol phosphates by phospholipase C.3,4 Initial attempts1 at correlating the inhibition of adenylate cyclase with platelet aggregation failed when it was found that although some aggregating agents (e.g. ADP) inhibited adenylate cyclase in intact platelets, others (e.g. vasopressin) did not.2 Moreover, it eventually became clear that inhibition of this enzyme serves only to reduce the inhibition of platelet aggregation by agents that increase platelet cyclic AMP levels, such as PGE1.6 In contrast, evidence that increases in intracellular Ca2+ free could activate platelets3 and that phosphoinositide breakdown was closely associated with Ca2+ mobilization in platelets and other cells,7,8 led to the concept that it is the receptor-mediated activation of phospholipase C that generates the signals leading to platelet aggregation and de-granulation. 9,10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. W. Salzman, Cyclic AMP and platelet function, N. Engl. J. Med., 286:358 (1972).

    Article  CAS  Google Scholar 

  2. R. J. Haslam, Roles of cyclic nucleotides in platelet function, Ciba Found. Symp. 35: 121 (1975).

    CAS  Google Scholar 

  3. M. B. Feinstein, G. A. Rodan, and L. S. Cutler, Cyclic AMP and calcium in platelet function, in: “Platelets in Biology and Pathology 2,” J. L. Gordon, ed., p.437, Elsevier/North-Holland, Amsterdam (1981).

    Google Scholar 

  4. S. Rittenhouse-Simmons, Production of diglyceride from phosphatidylinositol in activated human platelets, J. Clin. Invest., 63:580 (1979).

    Article  CAS  Google Scholar 

  5. E. G. Lapetina, Metabolism of inositides and the activation of platelets, Life Sci. 32:2069 (1983).

    Article  CAS  Google Scholar 

  6. R. J. Haslam, M. M. L. Davidson, and J. V. Desjardins, Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets. Evidence for the unidirectional control of platelet function by cyclic AMP, Biochem. J. 176:83 (1978).

    CAS  Google Scholar 

  7. R. H. Michell, C. J. Kirk, L. M. Jones, C. P. Downes, and J. A. Creba, The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions, Philos. Trans. R. Soc. London Ser. B 296:123 (1981).

    Article  CAS  Google Scholar 

  8. M. J. Berridge, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345 (1984).

    CAS  Google Scholar 

  9. Y. Nishizuka, Turnover of inositol phospholipids and signal transduction, Science 225:1365 (1984).

    Article  CAS  Google Scholar 

  10. T. J. Rink and T. J. Hallam, What turns platelets on?, Trends Biochem. Sci. 9:215 (1984).

    Article  Google Scholar 

  11. T. Imaoka, J. A. Lynham, and R. J. Haslam, Purification and characterization of the 47,000-dalton protein phosphorylated during degranulation of human platelets, J. Biol. Chem. 258:11404 (1983).

    CAS  Google Scholar 

  12. T. J. Hallam, A. Sanchez, and T. J. Rink, Stimulus-response coupling in human platelets. Changes evoked by platelet-activating factor in cytoplasmic free calcium monitored with the fluorescent calcium indicator quin2, Biochem. J. 218:819 (1984).

    CAS  Google Scholar 

  13. W. Siess, P. C. Weber, and E. G. Lapetina, Activation of phospholipase C is dissobiated from arachidonate metabolism during platelet shape change induced by thrombin or platelet-activating factor. Epinephrine does not induce phospholipase C activation or platelet shape change, J. Biol. Chem. 259:8286 (1984).

    CAS  Google Scholar 

  14. J. N. Fain and J. A. Garcia-Sainz, Role of phosphatidylinositol turnover in alpha1 and of adenylate cyclase inhibition in alpha2 effects of catecholamines, Life Sci. 26:1183 (1980).

    Article  CAS  Google Scholar 

  15. A. G. Gilman, G proteins and dual control of adenylate cyclase, Cell 36:577 (1984).

    Article  CAS  Google Scholar 

  16. B. D. Gomperts, Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors, Nature 306:64 (1983).

    Article  CAS  Google Scholar 

  17. R. J. Haslam and M. M. L. Davidson, Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets. Evidence of a role for a GTP-binding protein in platelet activation, FEBS Lett. 174:90 (1984).

    Article  CAS  Google Scholar 

  18. R. J. Haslam and M. M. L. Davidson, Receptor-induced diacyl-glycerol formation in permeabilized platelets; possible role for a GTP-binding protein, J. Receptor Res. 4:605 (1984).

    CAS  Google Scholar 

  19. R. J. Haslam and M. Yanderwel, Inhibition of platelet adenylate cyclase by 1–0-alkyl-2–0-acetyl-sn-glyceryl-3-phosphoryl-choline (platelet-activating factor), J. Biol. Chem. 257: 6879 (1982).

    CAS  Google Scholar 

  20. K. A. Williams and R. J. Haslam, Effects of NaCl and GTP on the inhibition of platelet adenylate cyclase by 1–0-octadecyl-2–0-acetyl-sn-glyceryl-3-phosphorylcholine (synthetic platelet activating factor), Biochim. Biophvs. Acta 770:216 (1984).

    Article  CAS  Google Scholar 

  21. R. J. Haslam and M. M. L. Davidson, Potentiation by thrombin of the secretion of serotonin from permeabilized platelets equilibrated with Ca2+ buffers. Relationship to protein phosphorylation and diacylglycerol formation, Biochem. J. 222:351 (1984).

    CAS  Google Scholar 

  22. P. Hadvary and H. R. Baumgartner, Activation of human and rabbit blood platelets by synthetic structural analogs of platelet activating factor, Thromb. Res. 30:143 (1983).

    Article  CAS  Google Scholar 

  23. D. E. Knight and M. C. Scrutton, Direct evidence for a role for Ca2+ in amine storage granule secretion by human platelets, Thromb. Res. 20:437 (1980).

    Article  CAS  Google Scholar 

  24. O. V. Miller, D. E. Ayer, and R. R. Gorman, Acetyl glyceryl-phosphorylcholine inhibition of prostaglandin 12-stimulated adenosine 3′,5′-cyclic monophosphate levels in human platelets. Evidence for thromboxane A2 dependence, Biochim. Biophys. Acta 711:445 (1982).

    CAS  Google Scholar 

  25. M. Vanderwel, D. S. Lum, and R. J. Haslam, Vasopressin inhibits the adenylate cyclase activity of human platelet particulate fraction through V1-receptors, FEBS Lett. 164:340 (1983).

    Article  CAS  Google Scholar 

  26. D. E. Maclntyre and W. K. Pollock, Platelet-activating factor, U44069 and vasopressin stimulate phosphatidyl inositol turnover in human blood platelets, Br. J. Pharmacol. 77:466P (1982).

    Google Scholar 

  27. D. C. B. Mills, Factors influencing the adenylate cyclase system in human blood platelets, In: “Platelets and Thrombosis”, S. Sherry and A. Scriabine, eds., university Park Press, Baltimore (1974).

    Google Scholar 

  28. J. D. Vickers, R. L. Kinlough-Rathbone, and J. F. Mustard, Thrombin and ADP decrease phosphatidylinositol 4,5-bis-phosphate in washed rabbit platelets by different mechanisms, Circulation Res. 70:11–49 (1984).

    Google Scholar 

  29. F. H. Valone, E. Coles, V. R. Reinhold, and E. J. Goetzl, Specific binding of phospholipid platelet-activating factor by human platelets, J. Immunol. 129:1637 (1982).

    CAS  Google Scholar 

  30. K. A. Williams, M. Vanderwel, and R. J. Haslam, Effects of proteolysis on the actions of monovalent cations and 1–0-octadecyl-2–0-acetyl-sn-glyceryl-3-phosphorylcholine on platelet adenylate cyclase, FEBS Lett. 166:13 (1984).

    Article  CAS  Google Scholar 

  31. L. E. Limbird, GTP and Na+ modulate receptor-adenyl cyclase coupling and receptor-mediated function, Am. J. Physiol. 247:E59 (1984).

    CAS  Google Scholar 

  32. K. Aktories, G. Schultz, and K. H. Jakobs, Inactivation of the guanine nucleotide regulatory site mediating inhibition of the adenylate cyclase in hamster adipocytes, Naunyn-Schmiedeberg’s Arch. Pharmacol. 321:247 (1982).

    Article  CAS  Google Scholar 

  33. D. E. Knight and M. C. Scrutton, Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion, Nature 309:66 (1984).

    Article  CAS  Google Scholar 

  34. P. C. Sternweis and J. D. Robishaw, Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain, J. Biol. Chem. 259:13806 (1984).

    CAS  Google Scholar 

  35. S.-B. Hwang, C.-S. C. Lee, M. J. Cheah, and T. Y. Shen, Specific receptor sites for 1–0-alkyl-2–0-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) on rabbit platelet and guinea pig smooth muscle membranes, Biochemistry 22:4756 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Haslam, R.J., Williams, K.A., Davidson, M.M.L. (1985). Receptor-Effector Coupling in Platelets: Roles of Guanine Nucleotides. In: Westwick, J., Scully, M.F., MacIntyre, D.E., Kakkar, V.V. (eds) Mechanisms of Stimulus—Response Coupling in Platelets. Advances in Experimental Medicine and Biology, vol 192. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9442-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9442-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9444-4

  • Online ISBN: 978-1-4615-9442-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics