Skip to main content

Agonist-Induced Inositol Phospholipid Metabolism and Ca++ Flux in Human Platelet Activation

  • Chapter
Mechanisms of Stimulus—Response Coupling in Platelets

Abstract

Human platelet responsiveness may be modulated by a variety of agonists that combine with specific receptors on the platelet plasma membrane. Receptors for Thrombin, ADP, Thromboxane (Tx) A2, Platelet activating factor (PAF), Vasopressin (VP). Adrenaline, Prostaglandin (PG) I2, PGD2 and Adenosine, inter alia, have been identified by a variety of pharmacological techniques including radioligand binding analyses, homologous desensitisation and the use of specific antagonists1,2. Platelets are electrically non-exciteable3. Thus in order for platelets to respond to externally applied (exogenous) agonists, there must exist some information transfer system whereby events at the cell surface influence the rates of the key biochemical reactions that actually mediate the cellular response. These key biochemical reactions are controlled by stimulus-induced changes in the intracellular concentrations of second messenger molecules including cAMP, cytosolic free Ca++ (Caf) and 1,2-diacylglycerol (DAG)4,5. These second messengers activate specific protein kinases, respectively cAMP-dependent protein kinase. Ca++-calmodulin-dependent protein kinase and protein kinase C6,7 that mediate the phosphorylation and altered reactivity of specific target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. C. B. Mills, and D. E. Macfariane, Platelet receptors, in “Platelets in Biology and Pathology 1”, J. L. Gordon, ed., Elsevier, Amsterdam (1976).

    Google Scholar 

  2. This volume: contributions by T. Detwiler; N. Cusack; R. L. Jones; D. Tuffin; D. B. Barnett; B. J. R. Whittle (1985).

    Google Scholar 

  3. D. E. MacIntyre and T. J. Rink, The role of platelet membrane potential in the initiation of platelet aggregation, Thromb. Haemost. 47:22 (1982).

    CAS  Google Scholar 

  4. R. H. Micheli, Ca++ and protein kinase C: two synergistic cellular signals, Trends Biochem. Sci. 8:263 (1983).

    Article  Google Scholar 

  5. M. B. Feinstein, G. A. Rodan and L. S. Cutler, Cyclic AMP and calcium in platelet function, in “Platelets in Biology and Pathology 2”, J. L. Gordon, ed., Elsevier, Amsterdam (1981).

    Google Scholar 

  6. S. E. Salama and R. J. Haslam, Characterization of the protein kinase activities of human platelet supernatant and particulate fractions, Biochem. J. 218:285 (1984).

    CAS  Google Scholar 

  7. Y. Nishizuka, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308:693 (1984).

    Article  CAS  Google Scholar 

  8. J. E. B. Fox, A. K. Say and R. J. Haslam, Subcellular distribution of the different platelet proteins phosphorylated on exposure of intact platelets to ionophore A23187 or to PGE1, Biochem. J. 184:651 (1979).

    CAS  Google Scholar 

  9. R. J. Haslam, M. M. L. Davidson and J. V. Desjardins, Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets, Biochem. J. 176:83 (1978).

    CAS  Google Scholar 

  10. R. M. Lyons and J. O. Shaw, Interaction of Ca++ and protein phosphorylation in the rabbit platelet release reaction, J. Clin. Invest. 65:242 (1980).

    Article  CAS  Google Scholar 

  11. J. Yamanishi, Y. Takai, K. Kaibuchi, K. Sano, M. Castagna and Y. Nishizuka, Synergistic functions of phorbol ester and calcium in serotonin release from human platelets, Biochem. Biophys. Res. Commun. 112:778 (1983).

    Article  CAS  Google Scholar 

  12. M. B. Feinstein, The role of calcium in blood platelet function, in “Calcium in drug action”, G. B. Weiss, ed., Plenum Press, New York (1978).

    Google Scholar 

  13. T. J. Rink, A. Sanchez and T.J. Hallam, Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets, Nature 305:317 (1983).

    Article  CAS  Google Scholar 

  14. M. J. Berridge, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345 (1984).

    CAS  Google Scholar 

  15. H. Streb, R. F. Irvine, M. J. Berridge and I. Schulz, Release of Ca++ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature 306:67 (1983).

    Article  CAS  Google Scholar 

  16. J. M. Gerrard, D. A. Peterson and J. G. White, Calcium mobilisation, in “Platelets in Biology and Pathology 2”, J. L. Gordon, ed., Elsevier, Amsterdam (1981).

    Google Scholar 

  17. R. M. C. Dawson and H. Hauser, Binding of calcium to phospholipids, in “Calcium and cellular function”, A. W. Cuthbert, ed., MacMillan, London (1970).

    Google Scholar 

  18. H. Lagast, T. Pozzan, F. Waldvogel and P. D. Lew, Phorbol myristate acetate stimulates ATP-dependent calcium transport by the plasma membrane of neutrophils, J. Clin. Invest 73:878 (1984).

    Article  CAS  Google Scholar 

  19. J. V. Lloyd and J. F. Mustard, Changes in 32P content of phosphatidc acid and the phosphoinositides of rabbit platelets during aggregation indiced by collagen or thrombin, Br. J. Haematol. 26:243 (1974).

    Article  CAS  Google Scholar 

  20. H. Holmsen, C. A. Dangelmaier and S. Rongved, Tight coupling of thrombin-indueed acid hydrolase secretion and phosphatidate synthesis to receptor occupancy in human platelets, Biochem. J. 222:157 (1984).

    CAS  Google Scholar 

  21. W. K. Pollock, R. A. Armstrong, L. J. Brydon, R. L. Jones and D. E. MacIntyre, Thromboxane-induced phosphatidate formation in human platelets; relationship to receptor occupancy and to changes in cytosolic free calcium, Biochem. J. 219:833 (1984).

    CAS  Google Scholar 

  22. J. Schacht, Extraction and purification of polyphosphoinositides, Meths. Enzymol. 72:623 (1981).

    Google Scholar 

  23. J. Jolies, H. Zwiers, A. Dekker, K. W. A. Wirtz and W. H. Gispen, Corticotropin-(1–24) tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain, Biochem. J. 194:283 (1981).

    Google Scholar 

  24. R. Y. Tsien, T. Pozzan and T. J. Rink, Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator, J. Cell Biol. 94:325 (1982).

    Article  CAS  Google Scholar 

  25. M. Castagna, Y. Takai, K. Kaibuchi, K. Sano, U. Kikkawa and Y. Nishizuka, Direct activation of calcium activated, phospholipid dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847 (1982).

    CAS  Google Scholar 

  26. P. Massini and E.F. Luscher, Some effects of ionophores for divalent cations on blood platelets: comparison with the effects of thrombin, Biochim. et Biophys. Acta 372:109 (1974).

    Article  CAS  Google Scholar 

  27. G. C. Le Breton, R. J. Dinerstein, L. J. Roth and H. Feinberg, Direct evidence for intracellular divalent cation redistribution associated with platelet shape change, Biochem. Biophys. Res. Commun. 71:362 (1976).

    Article  Google Scholar 

  28. N. E. Owen, H. Feinberg and G. C. Le Breton, Epinephrine induces Ca++ uptake in human blood platelets, Am. J. Physiol. 239: H483 (1980).

    CAS  Google Scholar 

  29. D. E. Knight, T. J. Hallam and M. C. Scrutton, Agonist selectivity and second messenger concentration in calcium mediated secretion, Nature 296:256 (1982).

    Article  CAS  Google Scholar 

  30. T. J. Rink and T. J. Hallam, What turns platelets on? Trends Biochem. Sci. 9:215 (1984).

    Article  Google Scholar 

  31. T. J. Hallam, N. J. Thompson, M. C. Scrutton and T. J. Rink, The role of cytoplasmic free calcium in the responses of quin 2-loaded human platelets to vasopressin, Biochem. J. 221:897 (1984).

    CAS  Google Scholar 

  32. L. F. Brass and S. J. Shattil, Changes in surface-bound and exchangeable calcium during platelet activation, J. Biol. Chem. 257:14000 (1982).

    CAS  Google Scholar 

  33. T. J. Rink, S. W. Smith and R. Y. Tsien, Cytoplasmic free Ca++ in human platelets: Ca++ thresholds and Ca independent activation for shape-change and secretion, FEBS Letters 148:21 (1982).

    Article  CAS  Google Scholar 

  34. R. H. Micheli, Stimulated inositol lipid metabolism, Cell Calcium 3:285 (1982).

    Article  Google Scholar 

  35. Y. Nishizuka, Turnover of inositol phospholipids and signal transduction, Science 225:1365 (1984).

    Article  CAS  Google Scholar 

  36. C. J. Kirk, Ligand-stimulated inositol lipid metabolism in the liver: relationship to receptor function, Cell Calcium 3: 399 (1982).

    Article  CAS  Google Scholar 

  37. A. H. Drummond, M. Bushfield and C. H. Macphee, Thyrotropin-releasing hormone stimulates rapid breakdown of phosphatidyl-inositol-4,5-bisphosphate and phosphatidylinositol-4-phosphate in GH3 pituitary tumour cells, Mol. Pharmacol. 25:193 (1983).

    Google Scholar 

  38. B. W. Agranoff, P. Murthy and E. B. Seguin, Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets, J. Biol. Chem. 258:2076 (1993).

    Google Scholar 

  39. M. J. Broekman, Phosphatidylinositol 4,5-bisphosphate may represent the site of release of plasma membrane bound calcium upon stimulation of human platelets, Biochem. Biophys. Res. Commun. 120:226 (1984).

    Article  CAS  Google Scholar 

  40. M. M. Billah and E. G. Lapetina, Degradation of phosphatidylinositol 4,5-bisphosphate is insensitive to Ca++ mobilisation in stimulated platelets, Biochem. Biophys. Res. Commun, 109: 217 (1982).

    Article  CAS  Google Scholar 

  41. A. Imai, S. Nakashima and Y. Nozawa, The rapid polyphosphoinositide metabolism may be a triggering event for thrombin-mediated stimulation of human platelets. Biochem. Biophys. Res. Commun. 110:108 (1983).

    Article  CAS  Google Scholar 

  42. S. D. Shukla and D. J. Hanahan, AGEPC-induced stimulation of rabbit platelets: effects on phosphatidylinositol, di- and tri-phosphoinositides and phosphatidic acid metabolism. Biochem. Biophys. Res. Commun. 106:697 (1982).

    Article  CAS  Google Scholar 

  43. D. E. MacIntyre, A. M. Shaw and W. K. Pollock, The effects of verapamil on PAF-induced human platelet phosphoinositide hydrolysis and Ca++ flux, Proc. 9th Int. Congress Pharmacol. Abstr. 571 (1984).

    Google Scholar 

  44. W. K. Pollock and D. E. MacIntyre, submitted (1985).

    Google Scholar 

  45. W. K. Pollock and D. E. MacIntyre, submitted (1985).

    Google Scholar 

  46. J. D. Vickers, R. L. Kinlough-Rathbone and J. F. Mustard, Changes in phosphatidylinsitol-4,5-bisphosphate 10 seconds after stimulation of washed rabbit platelets with ADP, Blood 60: 1247 (1982).

    CAS  Google Scholar 

  47. D. E. MacIntyre and L. J. MacMillan, Inositol phospholipid hydrolysis and Ca++ flux in the responses of rat platelets to ADP and Thrombin, Br. J. Pharmacol. in press (1985).

    Google Scholar 

  48. J. V. Lloyd, E. E. Nishizawa and J. F. Mustard, Effect of ADP-induced shape change on incorporation of 32p into platelet phosphatidic acid and mono-, di- and tri-phosphatidylinositol, Br. J. Haematol. 25:77 (1973).

    Article  CAS  Google Scholar 

  49. J. Giraudat and J. P. Changeaux, The acetylcholine receptor, Trends Pharmacol. Sci. 1:198 (1980).

    Article  CAS  Google Scholar 

  50. C. N. Serhan, M. J. Broekman, H. M. Korchak, A. J. Marcus and G. Weissmann, Endogenous phospholipid metabolism in stimulated neutrophils: differential activation by FMLP and PMA, Biochem. Biophys. Res. Commun. 107:951 (1982).

    Article  CAS  Google Scholar 

  51. D. E. MacIntyre, A. McNicol and A. H. Drummond, Tumour promoting phorbol esters inhibit agonist-induced phosphatidate formation and Ca++ flux in human platelets, FEBS Letters in press (1985).

    Google Scholar 

  52. A. H. Drummond, D. E. MacIntyre, A. McNicol and A. G. Rossi, 12-O-Tetradecanoyl-phorbol-13-acetate (TPA) inhibits agonist-induced phosphoinositide metabolism and Ca++ flux in human platelets, Br. J. Pharmacol. in press (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

MacIntyre, D.E., Pollock, W.K., Shaw, A.M., Bushfield, M., MacMillan, L.J., McNicol, A. (1985). Agonist-Induced Inositol Phospholipid Metabolism and Ca++ Flux in Human Platelet Activation. In: Westwick, J., Scully, M.F., MacIntyre, D.E., Kakkar, V.V. (eds) Mechanisms of Stimulus—Response Coupling in Platelets. Advances in Experimental Medicine and Biology, vol 192. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9442-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9442-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9444-4

  • Online ISBN: 978-1-4615-9442-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics