Skip to main content

Fecal Bile Acids in Health and Disease

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 90))

Abstract

Normal healthy adults consuming a mixed western diet excrete up to 500 mg of bile acids in feces each day. These acids are derived from the small proportion of micelles and bile acid conjugates that are not reabsorbed in the terminal ileum and enter the colon. Prior to excretion these substances and deconjugated and undergo a range of transformations mediated by the intestinal bacteria[l]. In addition to the secondary bile acids, lithocholic acid and deoxycholic acid (Figure 1), which normally dominate the fecal bile acid profile, a complex mixture of minor bile acids are excreted along with trace amounts of cholic acid and chenodeoxycholic acid[2]. Although fecal loss of bile acids is quite normal there is a growing body of evidence that abnormal fecal levels of the substrates may be associated with the risk of developing colorectal cancer[3]. This chapter will review some of the dietary and microbiological factors that influence the excretion of bile acids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. A. Macdonald, V. D. Bokkenheuser, J. Winter, A, M. McLernon, and E. H. Mosbach, Degradation of steroids in the human gut, J.Lipid Res., 24:675 (1983).

    CAS  Google Scholar 

  2. N. Tanida, Y. Hikasa, M. Hosomi, M. Satomi, I. Oohama, and S. Shimoyama, Fecal bile acid analysis in healthy Japanese subjects using lipophilic anion exchanger, capillary column gas chromatography and mass spectrometry, Gastroenterologia Japonica, 16:363 (1983).

    Google Scholar 

  3. B. S. Reddy, “Oncology Overview: The Role of Bile Acids in the Promotion of Gastrointestinal Carcinogenesis,” International Cancer Research Data Bank, Bethesda (1983).

    Google Scholar 

  4. P. Back and K. Walter, Developmental pattern of bile acid metabolism as revealed by bile acid analysis of meconium, Gastroenterology, 78:671 (1980).

    CAS  Google Scholar 

  5. R. Lester, J. Pyrek, J. M. Little, and E. W. Adcock, Diversity of bile acids in the fetus and newborn infant, J.Pediatric Gastro.Nutr., 2:355 (1983).

    CAS  Google Scholar 

  6. J. Pyrek, R. Lester, E. W. Adcock, and A. T. Sanghvi, Constituents of human meconium-I. Identification of 3-hydroxy-etianic acids, J.Steroid Biochem., 8:341 (1983).

    Article  Google Scholar 

  7. C. T. L. Huang, J. T. Rodriguez, W. E. Woodward, and B. L. Nichols, Comparison of patterns of fecal bile acid and neutral sterol between children and adults, Am.J.Clin.Nutr., 29:1196 (1976).

    CAS  Google Scholar 

  8. P. Eneroth, B. Gordon, R. Ryhage, and J. Sjövall, Identification of mono-and dihydroxy bile acids in human feces by gasliquid chromatography and mass spectrometry, J.Lipid Res., 7:511 (1966) et seq.

    CAS  Google Scholar 

  9. S. M. Grundy, E. H. Ahrens, and T. A. Miettenen, Quantitative isolation and gas liquid chromatographic analysis of total fecal bile acids, J.Lipid Res., 6:397 (1965).

    CAS  Google Scholar 

  10. E. Evrard and S. Janssen, Gas liquid chromatographic determination of human fecal bile acids, J.Lipid Res., 9:226 (1968).

    CAS  Google Scholar 

  11. B. Aimé, A. Bremmelgaard, J. Sjövall, and P. Thomassen, Analysis of metabolic profiles of bile acids in urine using lipophilic anion exchanger and computerized gas-liquid chromatography-mass spectrometry, J.Lipid Res., 18:339 (1977).

    Google Scholar 

  12. R. W. Owen, M. H. Thompson, and M. J. Hill, Analysis of metabolic profiles of steroids in feces of healthy subjects undergoing chenodeoxycholic acid treatment by liquid-gel chromatography and gas-liquid chromatography-mass spectrometry, J.Steroid Biochem., 21: (1984) in press.

    Google Scholar 

  13. K. D. R. Ketchell, A. M. Lawson, N. Tanida, and J. Sjövall, General methods for the analysis of metabolic profiles of bile acids and related compounds in feces, J.Lipid Res., 24:1085 (1983).

    Google Scholar 

  14. R. Wait, M. J. Hill, and M. H. Thompson, The role of minor bile acids in the etiology of colon cancer, Europ.J.Cancer Clin. Oncol., 19:1323 (1983).

    Google Scholar 

  15. P. L. Stark and A. Lee, The microbial ecology of the large bowel of breast-fed and formula fed infants during the first year of life, J.Med.Microbiol., 15:189 (1982).

    Article  CAS  Google Scholar 

  16. W. E. C. Moore, E. P. Kato, and L. V. Holdeman, Anaerobic bacteria of the gastrointestinal flora and their occurrence in clinical infections, J.Inf.Pis., 119:641 (1969).

    Article  CAS  Google Scholar 

  17. T. Mitsuoka, Recent trends in research on intestinal flora, Bifidobacteria Microflora, 1:3 (1982).

    Google Scholar 

  18. M. J. Goldberg, J. W. Smith, and R. L. Nichols, Comparison of the fecal microflora of Seventh-Day Adventists with individuals consuming a general diet, Annals of Surgery, 186:97 (1977).

    Article  CAS  Google Scholar 

  19. A. Schwan, A. Rydén, and G. Laurell, Fecal bacterial flora of four Nordic population groups with diverse incidence of large bowel cancer, Nutr.Cancer, 4:74 (1982).

    Article  CAS  Google Scholar 

  20. H. Eyssen and J. V. Eldere, Metabolism of bile acids, in: “The Germ Free Animal in Biomedical Research,” M.E. Coates and B.E. Gustaffson, eds., Laboratory Animals Ltd., London (1984).

    Google Scholar 

  21. S. Huijghebaert, G. Parmentier, and H. Eyssen, Specificity of bile salt sulfatase activity in man, mouse and rat intestinal microflora, J.Steroid Biochem., 40:907 (1984).

    Article  Google Scholar 

  22. S. P. Borriello and R. W. Owen, The metabolism of lithocholic acid and lithocholic acid-3-asulphate by human fecal bacteria, Lipids, 17:477 (1982).

    Article  CAS  Google Scholar 

  23. V. Aries and M. J. Hill, Degradation of steroids by intestinal bacteria 1: Deconjugation of bile salts, Biochim.Biophys. Acta, 202:526 (1970).

    Article  CAS  Google Scholar 

  24. I. A. Macdonald, G. Singh, D. E. Mahony, and C. E. Meier, Effect of pH on bile salt degradation by mixed fecal cultures, Steroids, 32:245 (1978).

    Article  CAS  Google Scholar 

  25. M. Morotomi, Y. Kawai, and M. Masahiko, Intestinal microflora and bile acids: in vitro cholic acid transformation by mixed fecal culture of rats, Microbiol.Immunol., 23:839 (1979).

    CAS  Google Scholar 

  26. P. B. Hylemon and T. L. Glass, Biotransformation of bile acids and cholesterol by the intestinal microflora, in: “Human Intestinal Microflora in Health and Disease,” D.J. Hentges, ed., Academic Press, New York (1983).

    Google Scholar 

  27. B. A. White, R. J. Fricke, and P. B. Hylemon, 7β-dehydroxylation of ursodeoxycholic acid by whole cells and cell extracts of the intestinal anaerobic bacterium, Eubacterium species VPI 12708, J.Lipid Res., 23:145 (1982).

    CAS  Google Scholar 

  28. I. A. Macdonald, Y. P. Rochon, D. M. Hutchison, and L. V. Holdeman, Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7β-hydroxy-steroid dehydrogenase-elaborating Eubacterium aerofaciens strain co-cultured with 7α-hydroxy-steroid dehydrogenase-elaborating organisms, Appl.Environ. Microbiol., 44:1187 (1982).

    CAS  Google Scholar 

  29. V. C. Aries, P. Goddard, and M. J. Hill, Degradation of steroids by intestinal bacteria. III. 3-oxo-5β—steroid Δ1dehydro-genase and 3-oxo-5β-steroid Δ1-dehydrogenase, Biochim. Biophys.Acta., 248:482 (1971).

    Article  CAS  Google Scholar 

  30. M. H. Thompson, Bacteria and carcinogenesis, in: “Advances in Gastroenterology: Gastrointestinal and Hepatobiliary Cancer,” H.J.F. Hodgson and S.R. Bloom, eds., Chapman and Hall, London (1983).

    Google Scholar 

  31. M. J. Hill, J. S. Crowther, B. S. Drasar, G. Hawksworth, V. Aries, and R. E. O. Williams, Bacteria and etiology of cancer of large bowel, Lancet, i:95 (1971).

    Article  Google Scholar 

  32. M. J. Hill, A. J. Taylor, M. H. Thompson, and R. Wait, Fecal steroids and urinary volatile phenols in four Scandinavian populations, Nutr.Cancer, 4:67 (1982).

    Article  CAS  Google Scholar 

  33. B. S. Reddy, L. A. Cohen, D. McCoy, P. Hill, J. H. Weisburger, and E. L. Wynder, Nutrition and its relationship to cancer, Adv.Cancer Res., 32:237 (1980).

    Article  CAS  Google Scholar 

  34. M. J. Hill, The effect of some factors on the fecal concentration of acid steroids, neutral steroids and urobilins, J.Pathol., 104:239 (1971).

    Article  CAS  Google Scholar 

  35. J. H. Cummings, H. S. Wiggins, D. J. A. Jenkins, H. Houston, T. Jivraj, B. S. Drasar, and M. J. Hill, Influence of diets high and low in animal fat on bowel habit, gastrointestinal transit time, fecal microflora, bile acid and fat excretion, J.Clin.Invest., 61:953 (1978).

    Article  CAS  Google Scholar 

  36. W. E. Connor, D. T. Witiak, D. B. Stone, and M. L. Armstrong, Cholesterol balance and fecal neutral steroid and bile acid excretion in normal men fed dietary fats of different fatty acid composition, J.Clin.Invest., 48:1363 (1969).

    Article  CAS  Google Scholar 

  37. J. H. Brussard, M. B. Katan, and J. G. A. J. Hautvast, Fecal excretion of bile acids and neutral steroids on diets differing in type and amount of dietary fat in young healthy persons, Europ.J.Clin.Invest., 13:115 (1983).

    Article  Google Scholar 

  38. B. S. Reddy, J. H. Weisburger, and E. L. Wynder, Effects of high risk and low risk diets for colon carcinogenesis on fecal microflora and steroids in man, J.Nutr., 105:878 (1975).

    CAS  Google Scholar 

  39. B. S. Reddy, Diet and excretion of bile acids, Cancer Research, 41:3766 (1981).

    CAS  Google Scholar 

  40. J. H. Cummings, M. J. Hill, T. Jivraj, H. Houston, W. J. Branch, and D. J. A. Jenkins, The effect of meat protein and dietary fiber on colonic function and metabolism. I. Change in bowel habit, bile acid excretion, and calcium absorption, Am.J. Clin.Nutr., 32:2086 (1979).

    CAS  Google Scholar 

  41. D. P. Burkitt, A. R. P. Walker, and N. S. Painter, Effect of dietary fiber on stools and transit time and its role in the causation of disease, Lancet, ii:1408 (1972).

    Article  Google Scholar 

  42. J. H. Cummings, M. J. Hill, D. J. A. Jenkins, J. R. Pearson, and H. S. Wiggins, Changes in fecal composition and colonic function due to clreal fiber, Am.J.Clin.Nutr., 29:1468 (1976).

    CAS  Google Scholar 

  43. R. M. Kay, Dietary fiber, J.Lipid Res., 23:221 (1982).

    CAS  Google Scholar 

  44. R. W. Kirby, J. W. Anderson, B. Sieling, E. D. Rees, W.-J. L. Chen, R. E. Miller, and R. M. Kay, Oat-bran intake selectively lowers serum low-density lipoprotein cholesterol concentrations of hypocholesterolemic men, Am.J.Clin.Nutr., 34:824 (1981).

    CAS  Google Scholar 

  45. I. McLean Baird, R. L. Walters, P. S. Davies, M. J. Hill, B. S. Drasar, and D. A. T. Southgate, The effects of two dietary fiber supplements on gastrointestinal transit, stool weight and frequency, and bacterial flora, and fecal bile acids in normal subjects, Metabolism, 26:117 (1977).

    Article  Google Scholar 

  46. J. H. Cummings, D. A. T. Southgate, W. J. Branch, H. S. Wiggins, H. Houston, D. J. A. Jenkins, T. Jivraj, and M. J. Hill, The digestion of pectin in the human gut and its effect on calcium absorption and large bowel function, Br.J.Nutr., 41:477 (1979).

    Article  CAS  Google Scholar 

  47. M. H. Thompson, R. W. Owen, M. J. Hill, and J. C. Cummings, Factors affecting fecal bile acid concentrations: Effects of fat and fiber, Biochem.Soc.Trans., 13: (1985) in press.

    Google Scholar 

  48. B. S. Drasar and M. J. Hill, “Human Intestinal Flora,” Academic Press, London (1974).

    Google Scholar 

  49. M. J. Hill, The role of colon anaerobes in the metabolism of bile acids and steroids, and its relation to colon cancer, Cancer, 36:2387 (1975).

    Article  CAS  Google Scholar 

  50. P. Goddard, F. Fernandez, B. West, M. J. Hill, and P. Barnes, The nuclear dehydrogenation of steroids by intestinal bacteria, J.Med.Micro., 8:429 (1975).

    Article  CAS  Google Scholar 

  51. J. S. Crowther, B. S. Drasar, P. Goddard, M. J. Hill, and K. Johnson, The effect of a chemically defined diet on the fecal flora and fecal steroid concentration, Gut, 14:790 (1973).

    Article  CAS  Google Scholar 

  52. W. E. C. Moore and L. V. Holdeman, Discussion of current bacteriological investigations of the relationships between intestinal flora, diet and colon cancer, Cancer Res., 35:3418 (1975).

    Google Scholar 

  53. K. Suzuki and T. Mitsuoka, Increase in fecal nitrosamines in Japanese individuals given a Western diet, Nature, 294:453 (1981).

    Article  CAS  Google Scholar 

  54. N. D. Nigro, Animal studies implicating fat and fecal steroids in intestinal cancer, Cancer Res., 41:3769 (1981).

    CAS  Google Scholar 

  55. B. S. Reddy, J. H. Weisburger, and E. L. Wynder, Colon cancer: Bile salts as tumor promotors, in: “Carcinogenesis, Vol 2. Mechanisms of Tumor Promotion and Co-carcinogenesis,” T.J. Slaga, S. Sivak, and R. K. Boutwell, eds., Raven Press, New York (1978).

    Google Scholar 

  56. M. J. Hill, B. C. Morson, and H. J. R. Bussey, Etiology of adenoma-carcinoma sequence in large bowel, Lancet, i:245 (1978).

    Article  Google Scholar 

  57. B. S. Reddy and E. L. Wynder, Metabolic epidemiology of colon cancer: Fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps, Cancer, 39:2533 (1977).

    Article  CAS  Google Scholar 

  58. M. J. Hill, B. C. Morson, and M. H. Thompson, The role of fecal bile acids (FBA) in large bowel carcinogenesis, Br.J.Cancer, 48:143 (1983).

    Google Scholar 

  59. R. W. Owen, M. Dodo, M. H. Thompson, and M. J. Hill, The fecal ratio of lithocholic acid to deoxycholic acid may be an important etiological factor in colorectal cancer, Europ.J. Cancer Clin.Oncol., 19:1307 (1983).

    Google Scholar 

  60. E. Bone, B. S. Drasar, and M. J. Hill, Gut bacteria and their metabolic activities in familial polyposis, Lancet, 1:1117 (1975).

    Article  CAS  Google Scholar 

  61. B. S. Reddy, A. Mastromarino, C. Gustafson, M. Lipkin, and E. L. Wynder, Fecal bile acids and neutral sterols in patients with familial polyposis, Cancer, 38:1694 (1976).

    Article  CAS  Google Scholar 

  62. M. Moskovitz, C. White, R. N. Barnett, S. Stevens, E. Russell, D. Vargo, and M. H. Floch, Diet, fecal bile acids, and neutral sterols in carcinoma of the colon, Dig.Pis.Sci., 24:746 (1979).

    Article  CAS  Google Scholar 

  63. D. G. Mudd, S. T. D. McKelvey, W. Norwood, D. T. Elmore, and A. D. Roy, Fecal bile acid concentrations of patients with carcinoma or increased risk of carcinoma in the large bowel, Gut, 21:587 (1980).

    Article  CAS  Google Scholar 

  64. A. J. Mastromarino, B. S. Reddy, and E. L. Wynder, Fecal profiles of anaerobic microflora of large bowel cancer patients and patients with nonheriditary large bowel polyps, Cancer Res., 38:4458 (1978).

    CAS  Google Scholar 

  65. S. J. Silverman and A. W. Andrews, Bile acids: Co-mutagenic activity in the Salmonella-mammalian-microsome mutagenicity test, J.Nat.Cancer Inst., 59:1557 (1977).

    CAS  Google Scholar 

  66. M. Wilpart, P. Mainguet, A. Maskens, and M. Roberfroid, Structure-activity relationship amongst biliary acids showing co-mutagenic activity towards 1,2-dimethylhydrazine, Carcinogenesis, 4:1239 (1983).

    Article  CAS  Google Scholar 

  67. L. R. Ferguson and M. J. Parry, Mitotic aneuploidy as a possible mechanism for tumor promoting activity in bile acids, Carcinogenesis, 5:447 (1984).

    Article  CAS  Google Scholar 

  68. K. D. R. Setchell, J. M. Gilbart, and A. M. Lawson, Fat and cancer, Brit.Med.J., 286:1750 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Thompson, M.H. (1985). Fecal Bile Acids in Health and Disease. In: Galli, G., Bosisio, E. (eds) Liver, Nutrition, and Bile Acids. NATO ASI Series, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9427-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9427-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9429-1

  • Online ISBN: 978-1-4615-9427-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics