Skip to main content

The Anticoagulant Properties of Fractionated and Depolymerized Heparins

  • Chapter
  • 43 Accesses

Part of the book series: Ettore Majorana International Science Series ((LIFESCI,volume 20))

Abstract

The anticoagulant property of heparin was first recognized by McLean (1916) during an investigation of the properties of chloroform extracts of various tissues. The name heparin was given to this material because of its hepatic origins. Plasma cofactor was shown to be necessary for its activity by Howell and Holt (1918) and purified heparin polysaccharide was first isolated by Howell (1925). The development of heparin for clinical research took place over forty years ago by research groups in Toronto and Stockholm (Jorpes 1939; Murray et al., 1937) and has now become universally used as an essential anticoagulant during surgery and enjoys widespread use in the control and prevention of thromboembolism postoperatively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abildgaard, U., 1968, Highly purified antithrombin III with haparin cofactor activity prepared by disc electrophoresis, Scand. J. Lab. Invest., 21: 89–91.

    Article  Google Scholar 

  • Anderson, L.O., Barrowcliffe, T.W., Holmer, E., Johnson, E.A., and Sims, G.E.C., 1976, Anticoagulant properties of heparin fractionated by affinity chromatography and gel filtration, Thromb. Res., 9: 575–583.

    Article  Google Scholar 

  • Carter, C.J., Kelton, J.G., Hirsh, J., Cerskus, A., Santos, A.V., and Gent, M., 1982, The relationship between the hemorrhagic and antithrombotic properties of low molecular weight heparin in rabbits, Blood, 59: 1239–1245.

    Google Scholar 

  • Casu, B., Oreste, P., Torri, G., Zoppett, G., Choay, J., Lormeau, J.C., Petitou, M., and Sinay, P., 1981, The structure of heparin oligosaccharide fragments with high anti-factor Xa activity containing the minimal antithrombin III binding site, Biochem. J., 197: 599–609.

    Google Scholar 

  • Cifonelli, J.A., and King, J., 1972, The distribution of 2-acetamido-2-deoxy-D-glucose residues in mammalian heparins, Carbohyd. Res., 21: 173–186.

    Article  Google Scholar 

  • Cifonelli, J.A., 1974, The relationship of molecular weight and sulphate content and distribution to anticoagulant activity of heparin preparations, Carbohyd. Res., 37: 147–154.

    Article  Google Scholar 

  • Denson, K.W.E., and Bonner, J., 1973, The measurement of heparin. A method based on the potentiation of anti-factor Xa, Thromb. Diath. Haem., 30: 471–482.

    Google Scholar 

  • Denton, J., Lane, D.A., Slater, A.M., Thunberg, L., and Lindahl, U., 1983, Size of heparin oligosaccharides required for anti-thrombin activity and interaction with platelet factor 4 (PF4). Submitted to IXth International Congress on thrombosis and hemostasis.

    Google Scholar 

  • Denton, J., Lane, D.A., Slater, A.M., Thunberg, L., and Lindahl, U., 1983, Binding of platelet factor 4 to heparin oligosaccharides, Biochem. J., 209: 455–460.

    Google Scholar 

  • Fransson, L.A., 1978, Periodate oxidation of the D-glucuronic acid residues in heparin sulphate and heparin, Carbohyd. Res., 62: 235–244.

    Article  Google Scholar 

  • Fransson, L.A., Malmström, A., Syöberg, I., and Huckerby, T.N., 1980, Periodate oxidation and alkaline degradation of heparin related glycans, Carbohyd. Res., 80: 131–145.

    Article  Google Scholar 

  • Holmer, E., Kurachi, K., and Söderström, G., 1981, The molecular weight dependence of the rate enhancing effect of heparin on the inhibition of thrombin, factor Xa, factor IXa, factor XIa, factor XIIa and kallikrein by antithrombin, Biochem. J., 193: 395–400.

    Google Scholar 

  • Höök, M., Björk, I., Hopwood, J., and Lindahl, U., 1976, Anticoagulant activity of heparin: separation of high-activity species by affinity chromatography on immobilized antithrombin, F.E.B.S. Lett., 66: 90–93.

    Article  Google Scholar 

  • Hopwood, J., Höök, M., Linker, A., and Lindahl, U., 1976, Anticoagulant activity of heparin: isolation of antithrombin binding sites, F.E.B.S. Lett., 69: 51–54.

    Article  Google Scholar 

  • Howell, W.H., and Holt, E.O., 1918, Two new factors in blood coagulation — heparin and proantithrombin, Amer. J. Physiol., 47: 328–341.

    Google Scholar 

  • Howell, W.H., 1925, The purification of heparin and its presence in blood, Amer. J. Physiol., 71: 553–562.

    Google Scholar 

  • Johnson, G.A., and Mulloy, B., 1976, The molecular weight range of mucosal heparin preparations, Carbohyd. Res., 51: 119–127.

    Article  Google Scholar 

  • Jordan, R.E., Oosta, G.M., Gardner, W.T., and Rosenberg, R.D., 1980, The binding of low molecular weight heparin to hemostatic enzymes, J. Biol. Chem., 255: 10073–10080.

    Google Scholar 

  • Jordan, R.E., Oosta, G.M., Gardner, W.T., and Rosenberg, R.D., 1980, The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin, J. Biol. Chem., 225: 10081–10090.

    Google Scholar 

  • Jorpes, E., 1939, “Heparin: Its Chemistry, Physiology and Application in Medicine,” Oxford University Press, London.

    Google Scholar 

  • Kakkar, V.V., Djazaeri, B., Fok, J., Fletcher, M., Scully, M.F., and Westwick, J., 1982, Low molecular weight heparin and prevention of deep vein thrombosis, Brit. Med. J., 284: 375–379.

    Article  Google Scholar 

  • Lagnuff, D., and Warren, G., 1962, Determination of 2-deoxy-2-sulphaminohexose content of mucopolysaccharides, Arch. Biochem. Biophys., 99: 396–400.

    Article  Google Scholar 

  • Lam, L.H., Silbert, J.E., and Rosenberg, R.D., 1976, Separation of active and inactive forms of heparin, Biochem. Biophys. Res. Commun., 69: 570–576.

    Article  Google Scholar 

  • Lane, D.A., MacGregor, I.R., Michalski, R., and Kakkar, V.V., 1978, Anticoagulant activities of four unfractionated and fractionated heparins, Thromb. Res., 12: 257–271.

    Article  Google Scholar 

  • Lasker, S.E., and Stivala, S.S., 1966, Physiochemical studies of fractionated bovine heparin I. Some dilute solution properties, Arch. Biochem. Biophys., 115: 360–372.

    Article  Google Scholar 

  • Laurent, T.C., 1961, Studies on fractionated heparin, Arch. Biochem. Biophys., 92: 224–231.

    Article  Google Scholar 

  • Lindahl, U., Bäckström, G., Höök, M., Thunberg, L., Fransson, L.A., and Linker, A., 1979, Structure of the antithrombin binding site in heparin, Proc. Natl. Acad. Sci. U.S.A., 76: 3198–3202.

    Article  ADS  Google Scholar 

  • Lindahl, U., Bäckström, G., Thunberg, L., and Leder, I.G., 1980, Evidence for a 3-0 sulphated D-glucosamine residue in the antithrombin binding sequence of heparin, Proc. Natl. Acad. Sci. U.S.A., 77: 6551–6555.

    Article  ADS  Google Scholar 

  • MacGregor, I.R., Lane, D.A., and Kakkar, V.V., 1979, Evidence for a plasma inhibitor of the heparin accelerated inhibition of factor Xa by antithrombin III, Biochem. Biphys. Acta, 586: 584–593.

    Article  Google Scholar 

  • MacGregor, I.R., Lane, D.A., and Kakkar, V.V., 1980, The anti heparin properties of human low density lipoprotein, Biochem. Biophys. Acta, 617: 472–479.

    Article  Google Scholar 

  • McLean, J., 1916, The thromboplastic action of cephalin, Amer. J. Physiol., 25: 683–687.

    Google Scholar 

  • Murray, D.W.G., Jaques, L.B., Perrett, T.S., and Best, C.G., 1937, Heparin and the thrombosis of veins following injury, Surgery, 2: 163–187.

    Google Scholar 

  • Nordenman, B., Danielsson, A., and Björk, I., 1978, The binding of low affinity and high affinity heparin to antithrombin, Eur. J. Biochem., 90: 1–6.

    Article  Google Scholar 

  • Nordenman, B., and Björk, I., 1978, Binding of low affinity and high affinity heparin to antithrombin. Ultraviolet spectroscopy and circular dichroism studies, Biochemistry, 17: 3339–3344.

    Article  Google Scholar 

  • Oosta, G.M., Gardner, W.T., Beeler, D.L., and Rosenberg, R.D., 1980, Multiple functional domains of the heparin molecule, Proc. Natl. Acad. Sci. U.S.A., 78: 829–833.

    Article  ADS  Google Scholar 

  • Riesenfeld, J., Thunberg, L., Höök, M., and Lindahl, U., 1981, The antithrombin binding sequence of heparin: Location of essential N-sulphate group, J. Biol. Chem., 256: 2389–2394.

    Google Scholar 

  • Rosenberg, R.D., and Damus, P.S., 1973, The purification and mechanism of action of human antithrombin-heparin cofactor, J. Biol. Chem., 248: 6490–6505.

    Google Scholar 

  • Scott, C.F., Schapira, M., and Coleman, R.W., 1982, Effect of heparin on the inactivation rate of human factor XIa antithrombin III, Blood, 60: 940–947.

    Google Scholar 

  • Shirley, J.E., and Conrad, H.E., 1976, Formation of anhydrosugars in the chemical depolymerization of heparin, Biochemistry, 15: 3932–3942.

    Article  Google Scholar 

  • Thunberg, L., Lindahl, U., Tengblad, A., Laurent, T.C., and Jackson, C.M., 1979, On the molecular-weight dependence of the anticoagulant activity of heparin, Biochem. J., 181: 241–243.

    Google Scholar 

  • Thunberg, L., Bäckström, G., Grundberg, H., Riesenfeld, J., and Lindahl, U., 1980, The molecular size of the antithrombin binding sequence in heparin, F.E.B.S. Lett., 117: 203–205.

    Article  Google Scholar 

  • Thunberg, L., Bäckström, G., and Lindahl, U., 1982, Further characterization of the antithrombin-binding sequence in heparin, Carbohyd. Res., 100: 393–410.

    Article  Google Scholar 

  • Tollefsen, D.M., and Blank, M.K., 1981, Detection of a new heparin dependent inhibitor of thrombin in human plasma, J. Clin. Invest., 68: 589–596.

    Article  Google Scholar 

  • Wessler, S., and Yin, E.T., 1973, The theory and practice of mini-dose heparin in surgical patients: a status report, Circulation, 47: 671–676.

    Article  Google Scholar 

  • Yin, E.T., Wessler, S., Butler, J.V., and Cole, S., 1973, Plasma heparin: a unique, practical, submicrogram-sensitive assay, J. Lab. Clin. Med., 81: 298–310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Denton, J., Lane, D.A. (1985). The Anticoagulant Properties of Fractionated and Depolymerized Heparins. In: Cajozzo, A., Perricone, R., Di Marco, P., Palazzolo, P. (eds) Advances in Hemostasis and Thrombosis. Ettore Majorana International Science Series, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9424-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9424-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9426-0

  • Online ISBN: 978-1-4615-9424-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics