Skip to main content

Microbial Interactions among Aerobic and Anaerobic Sulfur-Oxidizing Bacteria

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 8))

Abstract

Life on the earth is dependent on the balanced recycling of various elements. Well-known examples are the carbon, nitrogen, and sulfur cycles. Although these cycles are often discussed separately, they are, in fact, closely linked. This is due not only to the fact that organic matter contains these elements, but also to the role that nitrate or sulfate can play in replacing oxygen as an electron acceptor for the mineralization of organic compounds. Thus, during the breakdown of organic matter, nitrate is reduced to ammonia or nitrogen, and sulfate to sulfide. Both the ammonia and the sulfide can be reoxidized. Since this chapter is mainly concerned with the ecology of bacteria involved in the sulfur cycle, a brief discussion of this cycle is appropriate (Pfennig and Widdel, 1982; Kuenen, 1975; Trudinger, 1982). Sulfate serves as the sulfur source for the biosynthesis of organic sulfur compounds by plants and microorganisms using the process known as assimilatory sulfate reduction (Fig. 1). In biological materials, sulfur is usually present in its most reduced form (e.g., as sulfide in amino acids such as cysteine). During the decomposition of this material under aerobic conditions, the organic sulfide is initially oxidized and subsequently released as sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balashova, V. V., Vedenina, I. Ya., Markosyan, G. E., and Zavarzin, G. A., 1974, The auxotrophic growth of Leptospirillum ferrooxidans, Microbiology 43:491–494.

    Google Scholar 

  • Beudeker, R. F., de Boer, W., and Kuenen, J. G., 1981, Heterolactic fermentation of intracellular polyglucose by the obligate chemolithotroph Thiobacillus neapolitanus under anaerobic conditions, FEMS Microbiol Lett. 12:337–342.

    Article  CAS  Google Scholar 

  • Beudeker, R. F., Gottschal, J. C., and Kuenen, J. G., 1982, Reactivity versus flexibility in Thiobaci, Antonie Leeuwenhoek J. Microbiol. Seroi 48:39–51.

    Article  CAS  Google Scholar 

  • Biebl, H., and Pfennig, N. P., 1978, Growth yields of green sulfur bacteria in mixed culture with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117:9–16.

    Article  CAS  Google Scholar 

  • Biebl, H., and Pfennig, N. P., 1979, Anaerobic CO2 uptake by phototrophic bacteria. A review. Arch. Hydrobiol. Beitr. 12:48–58.

    Google Scholar 

  • Bos, P., and Kuenen, J. G., 1983, Microbiology of sulphur oxidizing bacteria, in: Microbial Corrosion, pp. 18–27, The Metals Society, London.

    Google Scholar 

  • Broch-Due, M., Ormerod, J. G., and Fjerdingen, B. S., 1978, Effect of light intensity on the vesicle formation in Chlorobium, Arch. Microbiol. 116:269–274.

    Article  CAS  Google Scholar 

  • Brock, T. D., 1966, Principles of Microbial Ecology, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Brock, T. D., 1978, Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Bull, A. T., and Slater, J. H., 1982, Microbial interactions and community structure, in: Microbial Interactions and Communities, (A. T. Bull and J. H. Slater, eds.), pp. 13–44, Academic Press, London.

    Google Scholar 

  • Caldwell, D. E., 1977, The planktonic microflora of lakes, CRC Crit. Rev. Microbiol. 5:305–370.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell, D. E., and Tiedje, J. M., 1975, The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can. J. Microbiol. 21:377–385.

    Article  CAS  PubMed  Google Scholar 

  • Castenholz, R. W., 1984, Habitats ofChloroflexus and related organisms, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), pp. 196–200, American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Caumette, P., 1982, Contribution of phototrophic bacteria to the food chain in a stratified tropical lagoon, in: 4th International Symposium on Photosynthetic Prokaryotes (R. Y. Stanier, ed.), Abstract A9, Institut Pasteur, Lyon.

    Google Scholar 

  • Cavanaugh, C. M., 1983, Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide rich habitats. Nature 302:58–61.

    Article  CAS  Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, L. M., Jannasch, H. W., and Waterbury, J. B., 1982, Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila (Jones): Possible chemoautotrophic symbionts, Science 213:340–342.

    Article  Google Scholar 

  • Cohen, Y., Padan, E., and Shilo, M., 1975, Facultative bacteria-like photosynthesis in the blue-green alga Oscillatoria limnetica, J. Bacteriol. 123:855–861.

    CAS  Google Scholar 

  • De Freitas, M. J., and Frederickson, A. G., 1978, Inhibition as a factor in the maintenance of diversity of microbial ecosystems, J. Gen. Microbiol. 106:307–320.

    Article  Google Scholar 

  • Felbeck, H., Childress, J. J., and Somero, G. N., 1981, Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide rich habitats. Nature 293:291–293.

    Article  CAS  Google Scholar 

  • Frederickson, A. G., 1977, Behavior of mixed cultures of microorganisms, Annu. Rev. Microbiol. 31:63–87.

    Article  Google Scholar 

  • Friedrich, C. G., and Mitringa, G., 1981, Oxidation of thiosulphate by Paracoccus denitrificans and other hydrogen bacteria, FEMS Microbiol. Lett. 10:209–212.

    Article  CAS  Google Scholar 

  • Gophen, M., Cavari, B. Z., and Beman, T., 1974, Zooplankton feeding on differentially labelled algae and bacteria. Nature 247:393–394.

    Article  Google Scholar 

  • Gottschal, J. C., and Kuenen, J. G., 1980a, Mixotrophic growth of Thiobacillus A2 on acetate and thiosulphate as growth limiting substrates in the chemostat. Arch. Microbiol. 126:33–42.

    Article  CAS  Google Scholar 

  • Gottschal, J. C, and Kuenen, J. G., 1980b, Selective enrichment of facultatively chemolithotrophic thiobacilli and related organisms in the chemostat, FEMS Microbiol. Lett. 7:241–247.

    Article  CAS  Google Scholar 

  • Gottschal, J. C., and Kuenen, J. G., 1981, Physiological and ecological significance of facultative chemolithotrophy and mixotrophy in chemolithotrophic bacteria, in: Microbial Growth on Cl-Compounds (H. Dalton, ed.), pp. 92–104, Heyden, London.

    Google Scholar 

  • Gottschal, J. C., and Thingstad, T. F., 1982, Mathematical description of competition between two and three bacterial species under dual substrate limitation in the chemostat: A comparison with experimental data, Biotechnol. Bioeng. 24:1403–1418.

    Article  CAS  PubMed  Google Scholar 

  • Gottschal, J. C., de Vries, S., and Kuenen, J. G., 1979, Competition between the facultatively chemolithotrophicThiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic spirillum for inorganic and organic substrates, Arch. Microbiol. 121:241–249.

    Article  CAS  Google Scholar 

  • Gottschal, J. C., Nanninga, H., and Kuenen, J. G., 1981, Growth of Thibacillus A2 under alternating growth conditions in the chemostat, J. Gen. Microbiol 126:23–28.

    Google Scholar 

  • Gray, B. H., Fowler, C. F., Nugent, N. A., Rigopoulos, N., and Fuller, R. C., 1973, Re- evaluation of Chloropseudomonas ethylica strain 2K, Int. J. Syst. Bacteriol 23:256–264.

    Article  Google Scholar 

  • Gude, H., Strohl, R., and Larkin, J. M., 1981, Mixotrophic and heterotrophic growth of Beggiatoa alba in continuous culture. Arch. Microbiol 129:357–361.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, T. A., 1974, Sulfide als electrondonor voorRhodospirillaceae, Ph. D. thesis. University of Groningen.

    Google Scholar 

  • Hansen, T. A., and van Gemerden, H., 1972, Sulfide utilization by purple nonsulfur bacteria, Arch. Microbiol 86:49–56.

    CAS  Google Scholar 

  • Harder, W., Kuenen, J. G., and Matin, A., 1977, Microbial selection in continuous culture, J. Appl Bacteriol 43:1–24.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, A. P., Jr., 1983, Genomic and physiological comparisons between heterotrophic Thiobaci and Acidiphilium cryptum, Thiobacillus versutus sp. nov. and Thiobacillus acidophilus nom. rev. Int. J. Syst Bacteriol. 33:211–217.

    Article  Google Scholar 

  • Harrison, A. P. Jr., Jarvis, B. W., and Johnson, J. L., 1980, Heterotrophic bacteria fi-om continuous cultures of autotrophic Thiobacillus ferrooxidans: Relationships as studied by means of deoxyribonuceic acid homology, J. Bacteriol 143:448–454.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Healey, F. P., 1980, Slopes of the Monod equations as an indicator of advantage in nutrient competition, Microb. Ecol 5:281–286.

    Article  CAS  PubMed  Google Scholar 

  • Hurlbert, R. E., and Lascelles, J., 1963, Ribulose diphosphate carboxylase in Thiorhodaceae, J. Gen. Microbiol. 33:445–458.

    Article  CAS  Google Scholar 

  • Ivanovsky, R. N., Sintsov, N. V., and Kondratieva, E. N., 1980, ATP linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Arch. Microbiol 128:239–241.

    Article  Google Scholar 

  • Jannasch, H. W., and Wirsen, C. O., 1981, Morphological survey of microbial mats near deep sea thermal vents, Appl Environ. Microbiol 41:528–538.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jørgensen, B. B., 1982, Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments, Philos. Trans. R. Soc. Lond. B 298:543–561.

    Article  Google Scholar 

  • Jørgensen, B. B., Kuenen, J. G., and Cohen, Y., 1979, Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai), Limnol Oceanogr. 24:799–822.

    Article  Google Scholar 

  • Kämpf, C., and Pfennig, N., 1980, Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violaceae and Chromatium vinosum, Arch. Microbiol. 127:125–135.

    Article  Google Scholar 

  • Kelly, D. P., 1978, Microbial ecology, in: The Oil Industry and Microbial Ecosystems (K. W. A. Chater, H. J. Somerville, and H. J. Heyden, eds.), pp. 12–27, Institute of Petroleum, London.

    Google Scholar 

  • Kelly, D. P., 1982, Biochemistry of the chemolithotrophic oxidation of inorganic sulphur, Philos. Trans. R. Soc. Lond B 298:499–528.

    Article  CAS  Google Scholar 

  • Kuenen, J. G., 1972, Een Studie van kleurloze zwavelbacterien uit het Groninger wad. Ph. D. thesis. University of Groningen.

    Google Scholar 

  • Kuenen, J. G., 1975, Colourless sulfur bacteria and their role in the sulphur cycle, Plant Soil 43:49–76.

    Article  CAS  Google Scholar 

  • Kuenen, J. G., and Beudeker, R. F., 1982, Microbiology ofThiobaci and other sulphur- oxidizing autotrophs, mixotrophs and heterotrophs, Philos. Trans. R. Soc. Lond. B 298:473–497.

    Article  CAS  Google Scholar 

  • Kuenen, J. G., and Gottschal, J. C., 1982, Competition among chemolithotrophs and meth- ylotrophs and their interactions with heterotrophic bacteria, in: Microbial Interactions and Communities (A. T. Bull and J. H. Slater, eds.), pp. 153–188, Academic Press, London.

    Google Scholar 

  • Kuenen, J. G., and Robertson, L. A., 1984a, Interactions between obligately and facultatively chemolithotrophic sulphur bacteria, in: Continuous Culture Vol. 8: Biotechnology, Medicine, and the Environment (A. C. R. Dean, D. C. Ellwood, and C. G. T. Evans, eds.), pp. 139–158, Ellis Horwood, Chichester.

    Google Scholar 

  • Kuenen, J. G., and Robertson, L. A., 1984b, Competition among chemolithotrophic bacteria under aerobic and anaerobic conditions, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), pp. 306–313, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Kuenen, J. G., and Tuovinen, O. H., 1981, The generaThiobacillus and Thiomicrospira, in: The Prokaryotes (M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), pp. 1023–1036, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Kuenen, J. G., Boonstra, J., Schröder, H. G. H., and Veldkamp, H., 1977, Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria, Microb. Ecol. 3:119–130.

    Article  CAS  PubMed  Google Scholar 

  • Kutznetsov, S. I., and Gorlenko, V. M., 1973, Limnologischen and mikrobiologischen eigenschaften von karstseen der A. S. R. Mari, Arch. Hydrobiol. 71:475–486.

    Google Scholar 

  • Laanbroek, H. J., Smit, A. J., Klein-Nulend, G., and Veldkamp, H., 1979, Competition for L-glutamate between specialised and versatile Clostridium species, Arch. Microbiol. 120:61–67.

    Article  CAS  PubMed  Google Scholar 

  • Larkin, J. M., and Ströhl, W. R., 1983, Beggiatoa, Thiothrix, and Thioploca, Annu. Rev. Microbiol. 37:341–367.

    Article  CAS  Google Scholar 

  • Leefeldt, R. H., and Matin, A., 1980, Growth and physiology of Thiobacillus novellus under nutrient limited mixotrophic conditions, J. Bacteriol. 142:645–650.

    CAS  PubMed Central  PubMed  Google Scholar 

  • La Rivière, J. W. M., 1974, The genusThiobacterium, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanen and N. E. Gibbons, eds.), p. 462, Williams and Williams, Baltimore.

    Google Scholar 

  • Lündgren, D. G., Andersen, K. J., Penson, C C., and Mahony, R. P., 1964, Culture structure and physiology of the chemoautotroph Ferrobacillus ferrooxidans, J. Gen. Microbiol. 105:215–218.

    Google Scholar 

  • Mackintosh, M. E., 1978, Nitrogen fixation by Thiobacillus ferrooxidans, Dev. Ind. Microbiol. 6:250–259.

    Google Scholar 

  • Markosyan, G. E., 1973, A new mixotrophic sulphur bacterium developing in acid media. Thiobacillus organoparus sp. n., Dok. Akad. Nauk SSSR 211:1205–1208 [Sov. Phys. Dok. 211:318–320(1973)].

    Google Scholar 

  • Matin, A., 1978, Organic nutrition of chemolithotrophic bacteria, Annu. Rev. Microbiol. 32:433–469.

    Article  CAS  PubMed  Google Scholar 

  • Montesinos, E., Estev, I., Abella, C., and Guerrero, R., 1982, Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats, in 4th International Symposium on Photosynthetic Prokaryotes (R. Y. Stanier, ed.). Abstract A19, Institut Pasteur, Lyon.

    Google Scholar 

  • Nelson, D. C., and Jannasch, H. W., 1983, Chemoautotrophic growth of a marine Beggiatoa in sulñde-gradient cultures. Arch. Microbiol. 136:262–269.

    Article  CAS  Google Scholar 

  • Norris, P. R., and Kelly, D. P., 1978, Dissolution of pyrite (F2) by pure and mixed cultures of some acidophilic bacteria, FEMS Microbiol. Lett. 4:143–146.

    Article  CAS  Google Scholar 

  • Olsen, J. M., and Romano, C. A., 1962, A new chlorophyll from green bacteria, Biochim. Biophys. Acta 59:726–728.

    Article  Google Scholar 

  • Parkes, R. J., 1982, Methods for enriching, isolating and analysing microbial communities in laboratory systems, in: Microbial Interactions and Communities (A. T. Bull and J. H. Slater, eds.), pp. 45–102, Academic Press, London.

    Google Scholar 

  • Pfennig, N., 1978, General physiology and ecology of photosynthetic bacteria, in: The Photosynthetic Bacteria (R. I. C. Clayton and V. R. Sistrom, eds.), pp. 3–18, Plenum Press, New York.

    Google Scholar 

  • Pfennig, N., and Widdel, F., 1982, The bacteria of the sulphur cycle, Philos. Trans. R. Soc. Lond. B 298:433–441.

    Article  CAS  Google Scholar 

  • Robertson, L. A., and Kuenen, J. G., 1983, Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium, J. Gen. Microbiol. 129:2847–2855.

    CAS  Google Scholar 

  • Sadler, W. R., and Stanier, R. Y., 1960, The function of acetate in photosynthesis by green bacteria, Proc. Natl. Acad Sci. USA 46:1328–1334.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schedel, M., 1978, Untersuchungen zur anaeroben oxidation reduzierter Schwefelverbin- dungen durch Thiobacillus denitrificans, Chromatium vinosum und Chlorobium limicola, Ph. D. Thesis, University of Bonn.

    Google Scholar 

  • Shafia, F., and Wilkinson, R. F., 1969, Growth ofFerrobacillus ferrooxidans on organic matter, J. Bacteriol. 97:251–260.

    Google Scholar 

  • Sirevâg, R., and Ormerod, J. G., 1977, Synthesis, storage and degradation of polyglucose in Chlorobium thiosulfatophilum. Arch. Microbiol. 111:239–244.

    Article  Google Scholar 

  • Slater, J. H., and Morris, I., 1973, The pathway of carbon dioxide assimilation in Rhodo- spirillum rubrum grown in turbidostat continuous flow culture. Arch. Microbiol. 92:235–244.

    CAS  Google Scholar 

  • Smith, A. L., and Kelly, D. P., 1979, Competition in the chemostat between an obligately and a facultatively chemolithotrophic Thiobacillus, J. Gen. Microbiol. 115:377–384.

    Article  Google Scholar 

  • Smith, A. L., Kelly, D. P., and Wood, A. P., 1980, Metabolism of Thiobacillus A2 grown under autotrophic, mixotrophic and heterotrophic conditions in chemostat cultures, J. Gen. Microbiol 121:127–138.

    CAS  Google Scholar 

  • Smith, D. W., and Finazzo, S. F., 1981, Salinity requirements of a marine Thiobacillus intermedius, Arch. Microbiol. 129:199–203.

    Article  CAS  Google Scholar 

  • Sorokin, Y., 1970, Interrelations between the sulphur and carbon turnover in leromictic (sic) lakes. Arch. Hydrobiol. 66:391–446.

    Google Scholar 

  • Stanier, R. Y., Adelberg, E. E., and Ingraham, J. L., 1976, The Microbial World, pp. 527–563, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Taylor, B. F., Hoare, D. S., and Hoare, S. L., 1971, Thiobacillus denitrificans as an obligate chemolithotroph. I: Isolation and growth studies. Arch. Mikrobiol. 88:285–298.

    Google Scholar 

  • Taylor, P. A., and Williams, P. J. L., 1974, Theoretical studies on the coexistence of competing species under continuous flow conditions. Can. J. Microbiol 21:90–98.

    Article  Google Scholar 

  • Timmer-ten Hoor, A., 1975, A new type of thiosulphate oxidizing nitrate-reducing microorganism: Thiomicrospira denitrificans sp. nov., Neth. J. Sea Res. 9:344–350.

    Article  CAS  Google Scholar 

  • Timmer-ten Hoor, A., 1977, Denitrificerende kleurloze zwavelbacterien. Ph. D. thesis. University of Groningen.

    Google Scholar 

  • Trudinger, P. A., 1982, Geological significance of sulphur oxidoreduction by bacteria, Philos. Trans. R. Soc. London. B 298:563–581.

    Article  CAS  Google Scholar 

  • Trüper, H. G., and Fischer, U., 1982, Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis, Philos. Trans. R. Soc. Lond. B 298:529–542.

    Article  Google Scholar 

  • Van Gemerden, H., 1967, On the bacterial sulfur cycle of inland waters, Ph. D. thesis. University of Leiden.

    Google Scholar 

  • Van Gemerden, H., 1974, Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria, Microb. Ecol. 1:104–119.

    Article  PubMed  Google Scholar 

  • Van Gemerden, H., 1980, Survival ofChromatium vinosum at low light intensities. Arch. Microbiol 125:115–121.

    Article  Google Scholar 

  • Van Gemerden, H., 1983, Physiological ecology of purple and green bacteria, Ann. Microbiol (Inst. Pasteur) 1343:73–92.

    Article  Google Scholar 

  • Van Gemerden, H., and Beeftink, H. H., 1981, Coexistence ofChlorobium and Chromatium in a sulfide-limited chemostat. Arch. Microbiol. 129:32–34.

    Article  Google Scholar 

  • Van Liere, E., 1979, On Oscillatoria agardhii Gomont, experimental ecology and physiology of a nuisance bloom-forming cyanobacterium, Ph.D. thesis, University of Amsterdam.

    Google Scholar 

  • Veldkamp, H., and Jannasch, H. W., 1972, Mixed culture studies with the chemostat, J. Appl. Chem. Biotechnol. 22:105–123.

    Article  CAS  Google Scholar 

  • Veldkamp, H., and Kuenen, J. G., 1973, The chemostat as a model system for ecological studies, in: Modern Methods in the Study of Microbial Ecology (T. Rosswall, ed.), Bulletins from the Ecological Research Committee (Stockholm), Vol. 17, pp. 347–355.

    Google Scholar 

  • Vishniac, W. V., 1974, Organisms metabolizing sulphur and sulphur compounds. The genus Thiobacillus, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanen and N. E. Gibbons, eds.), pp. 456–461, Williams and Williams, Baltimore.

    Google Scholar 

  • Walsby, A. E., 1978, The gas vesicles of aquatic prokaryotes, in: Relations between Structure and Function in the Prokaryotic Cell, 28th Symposium of the Society for General Microbiology (R. Y. Stanier, H. V. Rogers, and J. B. Ward, eds.), pp. 327–358, Cambridge University Press.

    Google Scholar 

  • Witzel, K. P., and Overbeek, J. G., 1979, Heterotrophic nitrification by Arthrobacter sp. (strain 9006) as influenced by different cultural conditions, growth state and acetate metabolism. Arch. Microbiol. 122:137–143.

    Article  CAS  Google Scholar 

  • Wood, A. P., and Kelly, D. P., 1983, Autotrophic, mixotrophic and heterotrophic growth with denitrification by Thiobacillus A2 under anaerobic conditions, FEMS Microbiol. Lett. 16:363–370.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Kuenen, J.G., Robertson, L.A., Van Gemerden, H. (1985). Microbial Interactions among Aerobic and Anaerobic Sulfur-Oxidizing Bacteria. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9412-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9412-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9414-7

  • Online ISBN: 978-1-4615-9412-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics