Skip to main content

Microfabrication Techniques for Studies of Percolation, Localization, and Superconductivity, and Recent Experimental Results

  • Chapter
Percolation, Localization, and Superconductivity

Part of the book series: NATO Science Series ((SPEPO,volume 109))

Abstract

In the past four years studies of localization and percolation in lower-dimensional systems have been conducted in a number of laboratories. These studies have advanced in a fundamental way our understanding of electron transport in dirty and inhomogeneous systems. The production of the experimental systems has relied directly on advanced microfabrication techniques. It is the purpose of this chapter to review these techniques and also selected experimental results for systems whose production exemplifies these microfabrication techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Howard and D. E. Prober, “Nanometer Scale Fabrication Techniques,” in: VLSI Electronics: Microstructure Science, Vol. V, N. E. Einspruch, ed., Academic, New York (1982).

    Google Scholar 

  2. J. E. Lukens, AIP Conf. Proc. 44:198 (1978); R. E. Howard, P. F. Liao, W. J. Skocpol, L. D. Jackel, and H. G. Craighead, Science 221:117 (1983).

    Google Scholar 

  3. H. I. Smith, Proc. IEEE 62:1361 (1974).

    Article  ADS  Google Scholar 

  4. A. N. Broers, IEEE Trans. Electron Devices ED-28:1268 (1981).

    Article  Google Scholar 

  5. R. Newman (ed.), “Fine Line Lithography,” North Holland Publ., Amsterdam (1980); I. Brodie and J. J. Muray, “Physics of Microfabrication,” Plenum Press, New York (1982); also, Refs. 1-3, 6-12 in Ref. 1.

    Google Scholar 

  6. M. D. Feuer and D. E. Prober, IEEE Trans. Electron Devices ED-28: 1375 (1981); chromatic aberration of microscope lenses is discussed by M. J. Brady and A. Davidson, Rev. Sci. Instrum. 54: Oct. (1983), to be published.

    Article  Google Scholar 

  7. P. Grabbe, E. L. Hu, and R. E. Howard, J. Vac. Sci. Technol. 21:33 (1982), and references therein.

    Article  ADS  Google Scholar 

  8. J. M. Moran, Solid State Technol. 24(4):195 (1981); M. Hatzakis, Solid State Technol. 24 (8):74 (1981); B. J. Lin, E. Bassous, V. W. Chao, and K. E. Petrillo, J. Vac. Sci. Technol. 19:1313 (1981).

    Google Scholar 

  9. L. D. Jackel, R.E. Howard, E. L. Hu, P. Grabbe, and D. M. Tennant, Appl. Phys. Lett. 39:268 (1981); D. M. Tennant, L. D. Jackel, R. E. Howard, E. L. Hu, P. Grabbe, R. J. Capik, and B. S. Schneider, J. Vac. Sci. Technol. 19:1304 (1981).

    Article  ADS  Google Scholar 

  10. P. S. Burggraaf, Semicond. Intl. (6)55 June (1983); K. Bartlett, G. Hillis, M. Chen, R. Trutna and M. Watts, SPIE Proc. 394, no. 05 (1983).

    Google Scholar 

  11. H. G. Craighead, R. E. Howard, L. D. Jackel, and P. M. Mankiewich, Appl. Phys. Lett. 42:38 (1983).

    Article  ADS  Google Scholar 

  12. P. Grabbe, Rev. Sci. Instrum. 51:992 (1980).

    Article  ADS  Google Scholar 

  13. R. B. Laibowitz, this volume; also A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, Appl. Phys. Lett. 29:596 (1976) and W. W. Molzen, A. N. Broers, J. J. Cuomo, J. M. E. Harper, and R. B. Laibowitz, J. Vac. Sci. Technol. 16:269 (1979).

    Article  ADS  Google Scholar 

  14. D. C. Flanders and A. E. White, J. Vac. Sci. Technol. 19:892 (1981); D. C. Flanders, J. Vac. Sci. Technol. 16:1615 (1979), and D. C. Flanders, Ph.D. Thesis, MIT (1978).

    Article  ADS  Google Scholar 

  15. D. C. Flanders, Appl. Phys. Lett. 36:93 (1980).

    Article  ADS  Google Scholar 

  16. K. E. Bean, IEEE Trans. Electron Devices ED-25:1185 (1978).

    Article  Google Scholar 

  17. H. Kroger, L. N. Smith, and D. W. Jillie, Appl. Phys. Lett. 39:280 (1981).

    Article  ADS  Google Scholar 

  18. H. W. Lehmann and R. Widmer, J. Vac. Sci. Technol. 15:319 (1978); L. M. Ephrath, IEEE Trans. Electron Devices ED-28: 1315 (1981).

    Article  ADS  Google Scholar 

  19. D. W. Face, S. T. Ruggiero, and D. E. Prober, J. Vac. Sci. Technol. A1:326 (1983); S. T. Ruggiero, D. W. Face, and D. E. Prober, IEEE Trans. Magn. MAG-19:960 (1983); a general review of ion beam techniques for material processing is given by J. M. E. Harper, J. J. Cuomo, and H. R. Kaufman, Ann. Rev. Mat. Sci. 13:413 (1983).

    ADS  Google Scholar 

  20. M. Gurvitch, M. A. Washington, and H. A. Huggins, Appl. Phys. Lett. 42:472 (1983); S. T. Ruggiero, E. Track, and D. E. Prober, to be published. See also Ref. 16b.

    Article  ADS  Google Scholar 

  21. D. E. Prober, M. D. Feuer, and N. Giordano, Appl. Phys. Lett. 37:94 (1980).

    Article  ADS  Google Scholar 

  22. M. D. Feuer and D. E. Prober, Appl. Phys. Lett. 36:226 (1980).

    Article  ADS  Google Scholar 

  23. A. de Lozanne, M. S. DiIorio, and M. R. Beasley, Appl. Phys. Lett. 42:541 (1983), and private communication

    Article  ADS  Google Scholar 

  24. G. Dolan, Appl. Phys. Lett. 31:337 (1977); E. L. Hu, L. D. Jackel, and R. E. Howard, IEEE Trans. Electron DevicesED-28:1382 (1981).

    Article  ADS  Google Scholar 

  25. L. D. Jackel, J. P. Gordon, E. L. Hu, R. E. Howard, L. A. Fetter, D. M. Tennant, R. W. Epworth, and J. Kurkijärvi, Phys. Rev. Lett. 47:697 (1981).

    Article  ADS  Google Scholar 

  26. a. G. J. Dolan, T. G. Phillips, and D. P. Woody, Appl. Phys. Lett. 34:347 (1979) and b. A. D. Smith, R. A. Batchelor, W. R. McGrath, P. L. Richards, H. van Kempen, D. E. Prober, and P. Santhanam, Appl. Phys. Lett. 39:655 (1981).

    Article  ADS  Google Scholar 

  27. a. Y. Imry, this volume, and J. Appl. Phys. 55:1812 (1981); b. H. Fukuyama, this volume, and Surf. Sci. 113:489 (1982).

    Google Scholar 

  28. a. A. Schmid, Z. Phys. 259:421 (1973); b. G. Bergmann, Z. Phys. B48:5 (1982); c. G. Giuliani and J. J. Quinn, Phys. Rev. B26:4421 (1982) — we identify p-pF with the thermal energy kT; d. E. Abrahams, P. W. Anderson, P. A. Lee, and T. V. Ramakrishnan, Phys. Rev. B24:6783 (1981); e. B. L. Altshuler, A. G. Arovov, D. E. Khmel’nitsky, J. Phys. C15:7367 (1982); f. R. A. Davies and M. Pepper, J. Phys. C. 16:L353 (1983).

    Article  ADS  Google Scholar 

  29. D. J. Thouless, Phys. Rev. Lett. 39:1167 (1977) and Solid State Commun. 34:683 (1980).

    Article  ADS  Google Scholar 

  30. a. N. Giordano, W. Gilson, and D. E. Prober, Phys. Rev. Lett. 43:725 (1979); b. N. Giordano, Phys. Rev. B22:5635 (1980).

    Article  ADS  Google Scholar 

  31. N. Giordano, in Physics in One Dimension, J. Bernasconi and T. Schneider, eds., Springer-Verlag, New York (1981), p.310, and Ref. 29b.

    Chapter  Google Scholar 

  32. Z. Ovadyahu, to be published.

    Google Scholar 

  33. P. Chaudhari and H.-U. Habermeier, Phys. Rev. Lett. 44:40 (1980), and Solid State Commun. 34:687 (1980); b. P. Chaudhari, A. N. Broers, C. C. Chi, R. Laibowitz, E. Spiller, and J. Viggiano, Phys. Rev. Lett. 45:930 (1980).

    Article  ADS  Google Scholar 

  34. A. E. White, M. Tinkham, W. J. Skocpol, and D. C. Flanders, Phys. Rev. Lett. 48:1752 (1982).

    Article  ADS  Google Scholar 

  35. P. Santhanam and D. E. Prober, to be published.

    Google Scholar 

  36. S. Wind, unpublished.

    Google Scholar 

  37. A. I. Larkin, Pis’ma Zh. Eksp. Teor. Fiz. 31:239 (1980), [JETP Lett. 31:219 (1980)].

    Google Scholar 

  38. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63:707 (1980).

    Article  ADS  Google Scholar 

  39. W. E. Lawrence and A. B. Meador, Phys. Rev. B18:1154 (1978).

    ADS  Google Scholar 

  40. a. Y. Bruynseraede, M. Gijs, C. Van Haesendonck, and G. Deutscher, Phys. Rev. Lett. 50:277 (1983); a recent reanalysis of this data yields the result of Eq. 6. b. M. E. Gershenson, V. N. Gubankov, and Yu. E. Zhuralev, Solid State Commun. 45:87 (1983).

    Article  ADS  Google Scholar 

  41. J. M. Gordon, C. J. Lobb, and M. Tinkham, Phys. Rev. B, to be published.

    Google Scholar 

  42. J. T. Masden and N. Giordano, Phys. Rev. Lett. 49:819 (1982).

    Article  ADS  Google Scholar 

  43. W. D. Williams and N. Giordano, Bull. Am. Phys. Soc. 28:486 (1983), and private communication.

    Google Scholar 

  44. R. C. Dynes, Physica 109-110B:1857 (1982); D. J. Bishop, R. C. Dynes and C. C. Tsuei, Phys. Rev. B26:773 (1982).

    Google Scholar 

  45. R. G. Wheeler, Phys. Rev. B24:4645 (1981) b. K. K. Choi, Phys. Rev. B, to be published.

    ADS  Google Scholar 

  46. R. G. Wheeler, K. K. Choi, A. Goel, R. Wisnieff, and D. E. Prober, Phys. Rev. Lett. 49:1674 (1982).

    Article  ADS  Google Scholar 

  47. a. Y. Kawaguchi and S. Kawaji, Surf. Sci. 113:505 (1982); b. R. A. Davies, M. Pepper, and M. Kaveh, J. Phys. C 16:L285 (1983).

    Article  ADS  Google Scholar 

  48. a. W. J. Skocpol, L. D. Jackel, E. L. Hu, R. E. Howard, and L. A. Fetter, Phys. Rev. Lett. 49:951 (1982) and Physica117-118B:667 (1983); b. L. D. Jackel, Bull. Am. Phys. Soc. 28:401 (1983); W. J. Skocpol, Bull. APS 28:276 (1983).

    Article  ADS  Google Scholar 

  49. A. B. Fowler, A. Hartstein, and R. A. Webb, Phys. Rev. Lett. 48:196 (1982).

    Article  ADS  Google Scholar 

  50. R. F. Kwasnick, M. A. Kastner, and J. Melngailis, Bull. Am. Phys. Soc. 28:322 (1983).

    Google Scholar 

  51. J. L. Speidell, J. Vac. Sci. Technol. 19:693 (1981).

    Article  ADS  Google Scholar 

  52. B. L. Altshuler and A. G. Aronov, JETP Lett. 33:499 (1981).

    ADS  Google Scholar 

  53. R. G. Wheeler, Bull. Am. Phys. Soc. 28:276 (1983); also, D. E. Prober, Bull. Am. Phys. Soc. 28:401 (1983).

    Google Scholar 

  54. B.L. Al’tshuler, A. G. Aronov, B. Z. Spivak, D. Yu. Sharvin, and Yu. V. Sharvin, JETP Lett. 35:588 (1983).

    ADS  Google Scholar 

  55. R. Dingle, H. Störmer, A. Gossard and W. Wiegmann, Appl. Phys. Lett. 33:665 (1978).

    Article  ADS  Google Scholar 

  56. G. E. Blonder and R. C. Dynes, private communication and to be published.

    Google Scholar 

  57. Y. Gefen, D. J. Thouless, and Y. Imry, Phys. Rev. B, to be published.

    Google Scholar 

  58. J. E. Mooij and P. Minnhagen, this volume; Y. Imry, AIP Conf. Proc. 58:141 (1980).

    Article  ADS  Google Scholar 

  59. D. J. Resnick, J. C. Garland, J. T. Boyd, S. Shoemaker, and R. S. Newrock, Phys. Rev. Lett. 47:1542 (1981).

    Article  ADS  Google Scholar 

  60. D. W. Abraham, C. J. Lobb, M. Tinkham, and T. M. Klapwijk, Phys. Rev, B26:5268 (1982).

    ADS  Google Scholar 

  61. J. L. Berchier and D. Sanchez, Rev. de Physique Appl. 14: 757 (1979), and references therein.

    Article  Google Scholar 

  62. a. A. Davidson and C. C. Tsuei, Physica 108B:1243 (1981); b. R. F. Voss and R. A. Webb, Phys. Rev. B25:3446 (1982).

    Google Scholar 

  63. J. H. Greiner et al., IBMJ. Res. Dev. 24:195 (1980); R. F. Broom et al., IEEE Trans. Electron Dev. ED-27:1998 (1980).

    Article  ADS  Google Scholar 

  64. A. T. Fiory, A. F. Hebard and S. Somekh, Appl. Phys. Lett. 32:73 (1978).

    Article  ADS  Google Scholar 

  65. O. Daldini, P. Martinoli, J. L. Olsen, and G. Berner, Phys. Rev. Lett. 32:218 (1974).

    Article  ADS  Google Scholar 

  66. L. N. Smith and C. J. Lobb, Phys. Rev. B20:3653 (1979).

    ADS  Google Scholar 

  67. P. F. Liao, J. G. Bergman, D. S. Chemla, A. Wokaun, J. Melngailis, A. M. Hawryluk, and N. P. Economou, Chem. Phys. Lett. 82:355 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Prober, D.E. (1984). Microfabrication Techniques for Studies of Percolation, Localization, and Superconductivity, and Recent Experimental Results. In: Goldman, A.M., Wolf, S.A. (eds) Percolation, Localization, and Superconductivity. NATO Science Series, vol 109. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9394-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9394-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9396-6

  • Online ISBN: 978-1-4615-9394-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics