Skip to main content

Use of Cell Culture to Identify Human Precancer

  • Chapter
  • First Online:
Eukaryotic Cell Cultures

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 172))

  • 132 Accesses

Abstract

In the United States, colon cancer is the most common form of internal cancer in both sexes. Prevention of the disease depends on early diagnosis of polyps or pre-cancerous lesions. The response of normal human colon fibroblasts (CRL1459) was used to identify individuals with clinical pre-cancer. Their plasma induced transformation associated morphology characterized by the retraction of cellular processes, cell rounding and eventual detachment from the vessel surface. Those plasma samples which induced a transformation associated morphology contained significantly increased levels of protease as shown by casein hydrolysis (Bio-Rad, CA). We are using hyperproteinasemia as a biomarker to identify individuals with polyps who have hereditary adenomatosis of the colon and rectum (ACR). We are currently evaluating cell cultures versus biochemical assays as a means for early detection of precancerous tumors in the general population. The findings of a tumor associated protease in clinical precancer, and its effect on cell cultures support our proposal that protease activity promotes tumor progression in ACR and may represent the gene defect in this hereditary disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACR:

adenomatosis of the colon and rectum

FPC:

familial polyposis coli

GS:

Gardner syndrome

VFPC:

variant familial polyposis coli

TM:

transformed morphology

PPA:

Plasma protease activity

CEA:

carcinoembryonic antigen

MNNG:

N′methyl N′ Nitroso N′ Nitrosoguanidine

TPA:

12-O-tetradecanoyl phorbal—13 acetate

PA:

plasminogen activator

LETS:

Large External Transformation Sensitive protein

C-AMP:

3′5′ cyclic adenosine monophosphate

C-GMP:

3′5′ cyclic guanosine monophosphate.

References

  1. American Cancer Society Facts and Figures, 1981.

    Google Scholar 

  2. H.J.R. Bussey, “Familial Polyposi Coli”, Johns Hopkins University Press, Baltimore, MD (1975).

    Google Scholar 

  3. C.R. Sachatello and W.O. Griffen, Familial polyposis coli, Am. J. Surg. 128:198, 1975.

    Article  Google Scholar 

  4. V.A. McKusick, Genetics and colon cancer: A review, Digest Dis. 19(10):954, 1974.

    Article  Google Scholar 

  5. T. Alm and B. Wahren, Carcinoembryonic antigen in hereditary adenomatosis of the colon and rectum. Scand. J. Gastroenterol. 19(8):875, 1975.

    Google Scholar 

  6. A.V. Jubert, T.M. Talbott and T.M. Maycroft, Characteristics of adenocarcinomas of the colorectum with low levels of preoperative plasma carcinoembryonic antigen (CEA), Cancer 42:635, 1978.

    Article  Google Scholar 

  7. J.K. Isley, Jr. and R.B. Akin, A community-based colon and rectal cancer screening program. J. Florida M.A. July:501, 1981.

    Google Scholar 

  8. J.S. Rhim, R.J. Huebner, P. Arnstein and L. Kopelovich, Chemical transformation of cultured human skin fibroboasts derived from individuals with hereditary adenomatosis of the colon and rectum, Int. J. Cancer 16(5):565, 1980.

    Article  Google Scholar 

  9. L. Kopelovich, N.E. Bias and L. Helson, Tumour promotors alone induces neoplastic transformation of fibroblasts from human genetically predisposed to cancer, Nature 282:619, 1979.

    Article  Google Scholar 

  10. R. Pollack, et al., Production of plasminogen activator and colonial growth in semisolid medium are in vitro correlates of tumorigeneicity in the immune-deficient nude mouse. In: “Proteases and Control, Vol. 2, ” (Cold Springs Harbor Conference on Cell Proliferation), (E. Reich, D.B. Rifkin and E. Shaw, eds.) Cold Springs Harbor Laboratory, NY (1975).

    Google Scholar 

  11. L. Kopelovich, Hereditary adenomatosis of the colon and rectum. A model of tumor progression. In: “Cancer Invasion and Metastasis: Biological Mechanisms and Therapy,” (B.S. Day et al., eds.), Raven Press, NY., pp. 383–395 (1977).

    Google Scholar 

  12. S. Jaken and P.H. Black, Regulation of plasminogen activator in 3T3 cells: Effect of phorbol myristate acetate on subcellular distribution and molecular weight. J. Cell Biol. 90:727, 1981.

    Article  Google Scholar 

  13. A.R. Kennedy and J.B. Little, Effects of protease inhibitors on radiation transformation in vitro. Cancer Res. 41(6):2103, 1981.

    Google Scholar 

  14. B.S. Danes and E.J. Gardner, The Gardner Syndrome: A cell culture study on kindred 109. J. Med. Genet. 15:346, 1978.

    Article  Google Scholar 

  15. H.C. Lyko and J.X. Hartmann, Detection of plasma protease in heritable adenomatosis coli. Abstr. In: “Cancer Research Proceedings,” Waverly Press, Inc., Baltimore, MD 21:81, 1980.

    Google Scholar 

  16. H.C. Lyko and J.X. Hartmann, Plasma protease and inhibitor activity identifies patients with a precancerous condition. Dancer Detection and Prevention 3(1):326, 1980.

    Google Scholar 

  17. H.C. Lyko and J.X. Hartman, Familial polyposis coli plasma causes a transformation associated morphology of cells in vitro: Hyperproteinasemia and colorectal polyps, Cancer Detection and Prevention 4:401–405, 1981.

    Google Scholar 

  18. A. Vaheri, et al., Fibronectin and proteases in tumor invasion. European Organization for Research on Treatment of Cancer (EORTC) Monograph Series, In: “Proteinases and Tumor Invasion,” (P. Straeuli, A.J. Barrett and A. Baici, eds.) Raven Press, NY, pp. 49–58 (1980).

    Google Scholar 

  19. J.B. Boyd, et al., Production and secretion of proteolytic enzymes by normal and neoplastic cells. J. Surg. Oncol. 11(3):275, 1979.

    Article  Google Scholar 

  20. P. Whur, J.J. Silcox, J.A. Boston and D.C. Williams, Plasminogen activation transforms the morphology of quiescent 3T3 cell monolayers and initiates growth, Br. J. Cancer 39(6):718, 1979.

    Article  Google Scholar 

  21. S. Jaken and P.H. Black, Differences in intracellular distribution of plasminogen activator in growing, confluent, and transformed 3T3 cells. Proc. Natl. Acad. Sci. 76(1):246, 1979.

    Article  Google Scholar 

  22. E. Wilmes, O.L. Schonberger and K. Hochstrasser, Studies for proteolysis in malignant tumours. Laryngol. Rhinol Otol. 58(11):861, 1979.

    Google Scholar 

  23. L. Kopelvich, et al., Organization of actin containing cables in cultured skin fibroblasts from individuals at high risk of colon cancer. Int. J. Cancer 26(3):301, 1980.

    Article  Google Scholar 

  24. D.B. Rifkin, R.M. Crowe and R. Pollack, Tumor promotors induce changes in the chick embryo fibroblast cytoskeleton, Cell 18:361, 1979.

    Article  Google Scholar 

  25. R. Pollack and D. Rifkin, Actin-containing cables within anchorage-dependent rat embryo cells are dissociated by plasmin and trypsin, Cell 6:495, 1975.

    Article  Google Scholar 

  26. C. Kryceve-Martinerie, et al., Transformation-enhancing factor(s) released from chicken Rous sarcoma cells: Effect on some transformation parameters. Virol. 112(2):436, 1981.

    Article  Google Scholar 

  27. G. De Petro, S. Bartali, T. Vartio and A. Vaheri, Transforming-enhancing activity of gelatin-binding fragments of fibronectin. Proc. Natl. Acad. Sci. 78(8):4965, 1981.

    Article  Google Scholar 

  28. M.M. Burger, et al., Growth control and cyclic alterations of cyclic AMP in the cell cycle. Nature New Biol. 239:161, 1972.

    Article  Google Scholar 

  29. F.R. DeRubertis, R. Chayoth and J.B. Field, The content and metabolism of cyclic adenosine 3′5′ monophosphate and cyclic guanosine 3′5′ monophosphate in adenocarcinoma of the human colon, J. Clin. Invest. 57:641, 1976.

    Article  Google Scholar 

  30. M. Lipkin, Cell kinetics: Summary of recent findings in studies of gastro intestinal disease in man. J. Envir. Pathol. Toxicol. 2(1):9, 1978.

    Google Scholar 

  31. F.R. DeRubertis and P.A. Craven, Early alterations in rat colonic mucosal cyclic nucleotides metabolism and protein kinase activity induced by 1, 2,-Dimethylhydrazine, Cancer Res. 40:4589, 1980.

    Google Scholar 

  32. H.C. Lyko and J.X. Hartmann, Ascorbate, cyclic nucleotides, citrus and a model for preventing large bowel cancer. J. Theor. Biol. 83:675, 1980.

    Article  Google Scholar 

  33. M.L. Pall, Gene-amplification model of carcinogenesis. Proc. Natl. Acad. Sci. 78:2465, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Lyko, H.C., Hartmann, J.X. (1984). Use of Cell Culture to Identify Human Precancer. In: Acton, R.T., Daniel Lynn, J. (eds) Eukaryotic Cell Cultures. Advances in Experimental Medicine and Biology, vol 172. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-9376-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9376-8_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-9378-2

  • Online ISBN: 978-1-4615-9376-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics