Skip to main content

Kidney Cell Cultures in Hormonally Defined Serum-Free Medium

  • Chapter
Mammalian Cell Culture

Abstract

Renal cell growth and function may be studied in vitro using both established kidney cell lines and primary kidney cultures. To a major extent, in vitro studies concerning renal functions have been primarily concerned with two established kidney epithelial cell lines, Madin Darby canine kidney (MDCK) and the pig kidney cell line LLC-PK1. These two cell lines are well characterized with regard to their transport properties. However, in vitro studies concerning hormonal regulation of growth and transport have not been extensive. The hormonally defined, serum-free culture media for these cell lines should facilitate such studies. Furthermore, hormonally defined serum-free culture media should also prove to be invaluable in the study of primary kidney cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abaza, N. A., Leighton, J., and Schultz, S., 1974, Effects of ouabain on the function and structure of a cell line (MDCK) derived from canine kidney. In vitro 10: 172–183.

    Article  CAS  Google Scholar 

  • Ambesi-Impiombato, F. S., Parks, L. A. M. and Coon, H. G., 1980, Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci USA. 77: 3455–3459.

    Article  PubMed  CAS  Google Scholar 

  • Auersperg, N., 1969, Histogenetic behavior of tumors. I. Morphologic variation in vitro and in vivo of two related human carcinoma cell lines. J Natl Cancer Inst. 43: 151–173.

    PubMed  CAS  Google Scholar 

  • Becker, J. H., and Willis, J. S., 1979, Properties of Na-K pump in primary cultures of kidney cells. J Cell. Physiol. 99: 427–440.

    Google Scholar 

  • Bottenstein, J. E., and Sato, G. H., 1978, Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci USA. 76: 514–517.

    Article  Google Scholar 

  • Bottenstein, J. E., Hayashi, I., Hutchings, S., Masui, H., Mather, J., McClure, D. G., Ohasa, S., Rizzino, A., Sato, G., Serrero, G., Wolfe, R., and Wu, R., 1979, The growth of cells in serum-free hormone-supplemented media, in: Methods in Enzymology, Volume 45 ( W. B. Jakoby, and I. H. Pastan), Academic Press, New York, pp. 94–109.

    Google Scholar 

  • Bottenstein, J. E., Skaper, S. D., Varon, S. S., and Sato, G. H., 1980, Selective survival of neurons from chick embryo sensory ganglionic dissociates utilizing serum-free supplemented medium. Exp Cell Res. 125: 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Burlington, H., 1959, Enzyme patterns in cultured kidney cells. Am J Physiol. 197: 68–70.

    PubMed  CAS  Google Scholar 

  • Burlington, H., and Cronkite, E. P., 1973, Characteristics of cell cultures derived from renal glomeruli. Proc Soc Exp Biol Med. 142: 143–149.

    PubMed  CAS  Google Scholar 

  • Casky, C. T., 1981, Inherited biochemical defects affecting the kidney, in: The Kidney in Systemic Disease ( W. N. Suki and G. Eknoyan), John Wiley and Sons, New York, pp. 627–650.

    Google Scholar 

  • Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., 1978, Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 77: 853–880.

    Article  PubMed  CAS  Google Scholar 

  • Chuman, L., Fine, L. G., Cohen, A. H., and Saier, M. H., 1982, Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium. J Cell Biol. 94: 506–510.

    Article  PubMed  CAS  Google Scholar 

  • Chung, S. D., Alavi, N., Livingston, D., Hiller, S., and Taub, M., 1982, Characterization of primary rabbit kidney cultures that express proximal tubule functions in a hormonally defined medium. J Cell. Biol 95: 118–126.

    Google Scholar 

  • Cohen, J. J., and Kamm, D. E., 1976, Renal metabolism: Relation to renal function, in: The Kidney, Volume I ( B. M. Brenner and F. C. Rector), W. B. Saunders, Philadelphia, pp. 126–213.

    Google Scholar 

  • Flamenbaum W., 1977, Pathophysiology of acute renal failure, in: Pathophysiology of the Kidney ( N. A. Kurtzonan and M. Martinez-Maldonado), Charles C Thomas, Springfield, Illinois, pp. 795–841.

    Google Scholar 

  • Gaush, C. R., Hard, W. L., and Smith, T. F., 1966, Characterization of canine kidney cells ( MDCK ). Proc Soc Exp Biol Med. 122: 931–935.

    Google Scholar 

  • Gilbert, S. F., and Migeon, B. R., 1975, D-valine as a selective agent for normal human and rodent epithelial cells in culture. Cell 5: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S. F., and Migeon, B. R., 1977, Renal enzymes in kidney cells selected by D-valine medium. J Cell Physiol 92: 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Goldring, S. R., Dayer, J. M., Ausiello, D. A., and Krane, S. M., 1978, A cell strain cultured from porcine kidney increases cyclic AMP content upon exposure to calcitonin or vasopressin. Biochem Biophys Res Commun. 83: 434–440.

    Article  PubMed  CAS  Google Scholar 

  • Goss, R. S., and Dittmer, J. E., 1969, Compensatory renal hypertrophy: Problems and prospects, in: Compensatory Renal Hypertrophy ( W. W. Nowinski and R. S. Goss), Academic Press, New York, pp. 299–307.

    Google Scholar 

  • Ham, R. G., 1982, Importance of the basal nutrient medium in the design of hormonally defined medium, in: Cold Spring Harbor Conferences on Cell Proliferation, Volume 9, Book A, ( G. H. Sato, A. B. Pardee, and D. A. Sirbasku). Cold Spring Harbor Laboratory, New York, pp. 39–60.

    Google Scholar 

  • Ham, R. G., and McKeehan, W. L., 1979, Media and growth requirements. Methods Enzymol 58: 44–93.

    Article  PubMed  CAS  Google Scholar 

  • Handler, J. S., Perkins, F. M., and Johnson, J. P., 1980, Studies of renal cell functions using cell culture techniques. Amer J Physiol 238: F1 - F9.

    PubMed  CAS  Google Scholar 

  • Hayashi, L, Earner, J., and Sato, G., 1978, Hormonal growth control of cells in culture. In vitro 14: 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Hemstreet, G. P., Enoch, P. G., Fine, P. R., and Wheat, R., 1981, Lipid A induction of cytotoxic antibody to cultured syngeneic rat kidney tubular cells. Kidney Int. 19: 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Hörster, M., 1979, Primary culture of mammalian nephron epithelia. Requirements for cell outgrowth and proliferation from defined explanted nephron segments. Pflüg Arch Eur J Physiol 382: 209–215.

    Google Scholar 

  • Hull, R. N., Cherry, W. R., and Weaver, G. W., 1976, The origin and characteristics of a pig kidney strain LLC-PKi. In vitro 12: 670–677.

    Article  PubMed  CAS  Google Scholar 

  • Kerjaschki, D., and Farquhar, M. G., 1982, The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sci USA. 79: 5557–5561.

    Article  PubMed  CAS  Google Scholar 

  • Kreisberg, J. L, Pitts, A. M., and Pretlow, T. G., 1977a, Separation of proximal tubule cells from suspensions of rat kidney cells in density gradients of Ficoll in tissue culture medium. Am J Patho. 86: 591–602.

    CAS  Google Scholar 

  • Kreisberg, J. L, Sachs, G., Pretlow, T. G., and McGuire, R. A., 1977b, Separations of proximal tubule cells from suspension of rat kidney cells by free-flow electrophoresis. J Cell Physiol 93: 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. B., and Attallah, A. H., 1977, The renal prostaglandins, in: Pathophysiology of the Kidney ( N. A. Kurtzmann and M. Martinez-Maldonado), Charles C Thomas, Springfield, Illinois, pp. 473–505.

    Google Scholar 

  • Leighton, J., Brada, Z., Estes, L. W., and Justh, G., 1969, Secretory activity and oncogenicity of a cell line ( MDCK) derived from canine kidney. Science 158: 472–473.

    Google Scholar 

  • Leighton, J., Estes, L. W., Mansukhani, S., and Brada, Z., 1970, A cell line derived from normal dog kidney ( MDCK) exhibiting qualities of papillary adenocarcinoma and of renal tubular epithelium. Cancer 26: 1022–1028.

    Google Scholar 

  • Lever, J., 1982, Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line. J Biol Chem. 257:8680– 8686.

    Google Scholar 

  • Licht, A., Fine, L. G., and Bourgoigne, J. J., 1977, Natriuretic factor, a lasting enigma, in: Contributions to Nephrology, Volume 13: Nonvasoactive Renal Hormones ( G. M. Eisenbach and J. Brod), S. Karger, Basel, pp. 3–11.

    Google Scholar 

  • Lieberman, L, and Ove, P., 1958, Enzyme activity levels in mammalian cell culture. J Biol Chem. 233: 634–636.

    PubMed  CAS  Google Scholar 

  • Ludens, J. H., Vaughn, D. A., Mawe, R. C., and Fanestil, D. D., 1978, Specific binding of deoxycorticosterone by canine kidney cells in culture. J Steroid Biochem. 9: 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Maldonado, M., and Garayalde, G., 1981, Renal involvement in multiple myeloma, in: The Kidney in Systemic Diseases ( W. N. Suki and G. Eknoyan), John Wiley, New York, pp. 197–209.

    Google Scholar 

  • Mather, J. P., 1980, Establishment and characterization of two distinct mouse testicular epithelial cell lines. Biol Reprod. 23: 243.

    Article  PubMed  CAS  Google Scholar 

  • Mather, J. P., and Sato, G. H., 1979, The use of hormone-supplemented serum-free media in primary cultures. Exp Cell Res. 124: 215.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, C. M., 1975, Cell organization and responsiveness to humans in vitro: Genesis of domes in mammary cell cultures. Am Zool 15: 231.

    Google Scholar 

  • McRoberts, J. A., Erlinger, S., Rindler, M. J., and Saier, M. H., 1982, Furosemide-sensitive salt transport in the Madin-Darby Canine Kidney cell line. J Biol Chem. 254: 2260–2266.

    Google Scholar 

  • Meier, K. E., and Insel, P. A., 1982, Clonal variation in the expression of catecholamine receptors in MDCK cells. J Cell. Biol 95: 4169a.

    Google Scholar 

  • Misfeldt, D. S., and Sanders, M. J., 1981, Transepithelial transport in cell culture: D-glucose transport by a pig kidney cell line ( LLC-PKi ). J Mem Biol 59: 13–18.

    Google Scholar 

  • Misfeldt, D. S., Hamamoto, S. T., and Pitelka, D. R., 1976, Transepithelial transport in cell culture. Proc Natl Acad Sci USA. 73: 1212–1216.

    Article  PubMed  CAS  Google Scholar 

  • Morel, F., 1981, Sites of hormone action in the mammalian nephron. Am J Physiol 240: F159 - F164.

    PubMed  CAS  Google Scholar 

  • Mullin, J. M., Weibel, J., Diamond, L., and Kleinzeller, A., 1980, Sugar transport in the LLC-PKi renal epithelial cell line: Similarity to mammalian kidney and influence of cell density. J Cell Physiol 104: 375–389.

    Google Scholar 

  • Oberling, C., Riviere, M., and Haguenau, F., 1960, Ultrastructure of the clear cells in renal carcinomas and its importance for the demonstration of their renal origin. Nature 186: 402–403.

    Article  PubMed  CAS  Google Scholar 

  • Orly, J., Sato, G., and Erickson, G. F., 1980, Serum suppresses the expression of hormonally induced functions in cultured granulosa cells. Cell 20: 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Quadracci, L. J., and Striker, G. E., 1970, Growth and maintenance of glomerullar cells in vitro. Proc Soc Exp Biol Med. 135: 947–950.

    PubMed  CAS  Google Scholar 

  • Rabito, C. A., and Ausiello, D. A., 1980, Na dependent sugar transport in a cultured epithelial cell line from pig kidney. J Mm Biol 54: 31–38.

    Article  CAS  Google Scholar 

  • Rabito, C. A., and Karish, M. V., 1982, Polarized amino acid transport by an epithelial cell line of renal origin ( LLC-PKi ). J Biol Chem. 257: 6802–6808.

    Google Scholar 

  • Rindler, M. J., Chuman, L. M., Shaffer, L., and Saier, M. H., 1979a, Retention of differentiated properties in an established dog kidney epithelial cell line ( MDCK ). J Cell Biol. 81: 635–648.

    Google Scholar 

  • Rindler, M. J., Taub, M., and Saier, M. H., 1979b, Uptake of Na by cultured dog kidney cells (MDCK). J Biol. Chem. 254: 11431–11433.

    Google Scholar 

  • Sacktor, B., 1977, The brush border of the renal proximal tubule and the intestinal mucosa, in: Mammalian Cell Membranes, Volume 4, Membranes and Cellular functions ( G. A. Jamieson and D. M. Robinson), Butterworths, London, pp. 221–254.

    Google Scholar 

  • Stiles, C. D., Desmond, W., Chuman, L. M., Sato, G., and Saier, M. H., 1976, Relationship of cell growth behavior in vivo to tumorigenicity in athymic nude mice. Cancer Res. 36: 3300–3305.

    PubMed  CAS  Google Scholar 

  • Taub, M., and Saier, M. H., 1979, Regulation of Na uptake by calcium in an established kidney epithelial cell line. J Biol Chem. 254: 11440–11444.

    PubMed  CAS  Google Scholar 

  • Taub, M., and Saier, M. H., 1981, Amiloride-resistant Madin-Darby Canine Kidney ( MDCK) cells exhibit decreased cation transport. J Cell Physiol. 106: 191–199.

    Google Scholar 

  • Taub, M., and Sato, G. H., 1979, Growth of kidney epithelial cells in hormone-supplemented serum-free medium. J Supranol Struct Cell Biochem. 11: 207–216.

    CAS  Google Scholar 

  • Taub, M., and Sato, G., 1980, Growth of functional primary cultures of kidney epithelial cells in defined medium. J Cell Physiol. 105: 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Taub, M., Chuman, L., Saier, M. H., and Sato, G., 1979, Growth of Madin-Darby Canine Kidney epithelial cell ( MDCK) line in hormone-supplemented serum-free medium. Proc Natl Acad Sci USA. 76: 3338–3342.

    Google Scholar 

  • Taub, M., Devis, P., and Hiller, S., 1984, Madin Darby Canine Kidney variant cells have altered cyclic AMP metabolism and altered responsiveness to PGEi in a hormonally defined medium. J Cell. Biochem., submitted.

    Google Scholar 

  • Torres, V. E., Northrup, T. E., Edwards, R. M., Shah, S. V., and Dousa, T. P., 1978, Modulation of cyclic nucleotides in isolated rat glomeruli. J Clin Invest. 62: 1334–1343.

    Article  PubMed  CAS  Google Scholar 

  • Valentich, J. D., Tchao, R., and Leighton, J., 1979, Hemicyst formation stimulated by cyclic AMP in dog kidney cell line MDCK. J Cell Physiol 100: 291–304.

    Article  PubMed  CAS  Google Scholar 

  • Wilson P. O., and Hörster, M. F., 1982, Differential response to hormones of defined distal nephron epithelia in culture. Am J Physiol 244: C166 - C174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Taub, M. (1984). Kidney Cell Cultures in Hormonally Defined Serum-Free Medium. In: Mather, J.P. (eds) Mammalian Cell Culture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9361-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9361-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9363-8

  • Online ISBN: 978-1-4615-9361-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics