Skip to main content
Book cover

Proteases pp 73–87Cite as

Structure and Function of Natural Inhibitors as Antagonists of Proteinase Activities

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 167))

Abstract

Enzymic activities are controlled and regulated in nature by various processes which can be subheaded under the notions given in Table 1. For proteolytic enzymes the processes 1–5 are known to be valid while the other processes have so far only been established for other enzyme classes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Schechter, and A. Berger, On the size of the active site in proteases. I. Papain, Biochem. Biophys. Res. Commun. 27: 157 1967.

    Article  PubMed  CAS  Google Scholar 

  2. R. Vogel, I. Trautschold und E. Werle, “Natürliche Proteinasen-Inhibitoren,” Thieme Verlag, Stuttgart (1966).

    Google Scholar 

  3. H. Fritz, and H. Tschesche, eds., “Proceedings of the International Research Conference on Proteinase,” de Gruyter, Berlin-New York (1971).

    Google Scholar 

  4. H. Fritz, H. Tschesche, L. J. Greene, and E. Truscheit, eds., “Proteinase Inhibitors,”-Bayer Symposium V, Springer Verlag, Berlin — Heidelberg — New York (1974).

    Google Scholar 

  5. E. Reich, D. B. Rifkin, and E. Shaw, eds., “Proteases and Biological Control,” Cold Spring Harbor Conf. on Cell Proliferation, Vol. 2, Cold Spring Harbor Laboratory, Cold Spring Harbor (1975).

    Google Scholar 

  6. H. Holzer, and H. Tschesche, eds., “Biological Functions of Proteinases,” Springer Verlag, Berlin — Heidelberg — New York (1979).

    Google Scholar 

  7. M. Laskowski, Jr. and R.W. Sealock, Protein-proteinase-inhibitors — Molecular aspects, in: “The Enzymes, Vol III,” Academic Press, New York (1971).

    Google Scholar 

  8. H. Tschesche, Biochemie natürlicher Proteinase-Inhibitoren, Angew. Chem. 86: 21; Angew. Chem. Internat. Ed. 13: 10 (1974).

    Google Scholar 

  9. M. Laskowski, Jr., and I. Kato, Protein inhibitors of proteinases, Annu. Rev. Biochemistry 49: 593 1980.

    Article  CAS  Google Scholar 

  10. H. Tschesche, Proteolytic enzyme inhibitors, in: “Medicinal Chemistry Advances,” De Las Heras, F.G., Vega, S., eds., Pergamon Press, Oxford (1981).

    Google Scholar 

  11. E. Wächter, and K. Hochstrasser, Kunitz-type proteinase inhibitors derived by limited proteolysis of the inter-α — trypsin inhibitor, III, Z. Physiol. Chem. 360: 1305 1979.

    Article  Google Scholar 

  12. U. Quast, J. Engel, E. Steffen, H. Tschesche, and S. Kupfer, Stopped-flow kinetics of the resynthesis of the reactive site peptile bond in kallikrein inhibitor (Kunitz) by betatrypsin, Biochemistry 17: 1675 1978.

    Article  PubMed  CAS  Google Scholar 

  13. H. Tschesche, S. Kupfer, R. Klauser, E. Fink, and H. Fritz, Structure, biochemistry and comparative aspects of mammalian seminal plasma acrosin inhibitors, in: “Protides Biol. Fluids, 23 Colloqu.,” H. Peeters, ed., Pergamon Press, Oxford-New York (1976).

    Google Scholar 

  14. I. Kato, W. J. Lohr, and M. Laskowski, Jr., Evolution of Avian Ovomncoids, in.: “Proc. 11th FEBS Meeting Regulatory Proteolytic Enzymes and their Inhibitors,” S. Magnusson et al., eds., Pergamon Press, Oxford (1978).

    Google Scholar 

  15. R. W. Sealock, and M. Laskowski, Jr., Enzymatic replacement of the arginyl by a lysyl residue in the reactive site of soybean trypsin inhibitor, Biochemistry 8: 3703 (1969).

    Article  PubMed  CAS  Google Scholar 

  16. H. Jering, and H. Tschesche, Replacement of lysine by arginine, phenylalanine and tryptophan in the reactive site of the bovine trypsin-kallikrein inhibitor (Kunitz) and change of the inhibitory properties, Eur. J. Biochem. 61: 453 1976.

    Article  PubMed  CAS  Google Scholar 

  17. H. R. Wenzel und H. Tschesche, “Chemische Mutation” durch Aminosäureaustausch im reaktiven Zentrum eines Proteinase-Inhibitors und Änderung seiner Hemmspezifität, Angew. Chem. 93: 292; Angew. Chem. Internat. Ed. 20: 295 (1980).

    Google Scholar 

  18. M. Laskowski, Jr., M. W. Empie, I. Kato, W. J. Kohr, W. Ardelt, W. C. BogardJr., E. Weber, E. Papamokos, W. Bode, and R. Huber, Correlation of amino acid sequence with inhibitor activity and specifity of protein inhibitors of serine proteinases, in.: “Structural and Functional Aspects of Enzyme Catalysis,” H. Eggerer, R. Huber, eds., Springer Verlag, Berlin — Heidelberg — New York (1981).

    Google Scholar 

  19. A. J. Barrett, and P. M. Starkey, The interaction of α2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism, Biochem. J. 133: 709 1973.

    PubMed  CAS  Google Scholar 

  20. B. Mortensen, L. Sottrup-Jensen, M. F. Hansen, T. E. Petersen, and St. Magnusson, Primary and secondary cleavage sites in the bait region of α2-macroglobulin, FEBS letters 135: 295 1981.

    Article  PubMed  CAS  Google Scholar 

  21. L. Sottrup-Jensen, T. E. Petersen, and St. Magnusson, Mechanisms of proteinase complex formation with α2-macroglobulin, FEBS letters, 128: 127 (1981).

    Article  PubMed  CAS  Google Scholar 

  22. L. Sottrup-Jensen, T. E. Petersen, and St. Magnusson, A thiol ester in α2-macroglobulin cleaved during proteinase complex formation, FEBS letters 121: 275 1980.

    Article  PubMed  CAS  Google Scholar 

  23. L. Sottrup-Jensen, F. M. Hansen, S. B. Mortensen, T. E. Petersen, and St. Magnusson, Sequence location of the reactive thiol ester in human α2-macroglobulin, FEBS letters 123: 145 1981.

    Article  PubMed  CAS  Google Scholar 

  24. H. W. Macarney, and H. Tschesche, Latent collagenase from human. polymorphonuclear leukocytes and activation to collagenase by removal of an inhibitor, FEBS letters 119: 327 1980.

    Article  Google Scholar 

  25. H. Tschesche, and H. W. Macartney, A new principle of regulation of enzymic activity, Eur. J. Biochem. 120: 183 1981.

    Article  PubMed  CAS  Google Scholar 

  26. H. W. Macartney, and H. Tschesche, Latent and active human polymorphonuclear leukocyte collagenases: Isolation, purification and characterization, Eur. J. Biochem. 130: 71 1983.

    Article  PubMed  CAS  Google Scholar 

  27. H. W. Macartney, and H. Tschesche, The collagenase inhibitor from human polymorphonuclear leukocytes. Isolation, purification and characterization, Eur. J. Biochem. 130: 79 1983.

    Article  PubMed  CAS  Google Scholar 

  28. J. Schultz, and K. Kaminker, Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization, Arch. Biochem. Biophys. 96: 465 1962.

    Article  PubMed  CAS  Google Scholar 

  29. B. M. Babior, R. S. Kipnes, and J. T. Cumutte, Biological defense mechanisms. The production by leukocytes of superoxide, a potential bacterial agent, J. Clin. Invest. 52: 741 1973.

    Article  PubMed  CAS  Google Scholar 

  30. G. Y. N. Iyer, M. F. Islam, and I. H. Quastel, Biochemical aspects of phagocytosis, Nature 192: 535 1961.

    Article  CAS  Google Scholar 

  31. M. Zatti, and F. Rossi, Early changes of hexose monophosphate pathway activity and of NADPH oxidation in phagocytizing leucocytes, Biochim. Biophys. Acta 99: 557 1965.

    Article  PubMed  CAS  Google Scholar 

  32. S. Klebanoff, and R. A. Clark, “The Neutrophil,” North-Holland Publ. Comp, Amsterdam — New York — Oxford (1978).

    Google Scholar 

  33. D. E. Woolley, D. R. Robert, and I. M. Evanson, Small molecular weight β1 serum-protein which specifically inhibits human collagenases, Nature 261: 325 1976.

    Article  PubMed  CAS  Google Scholar 

  34. H. W. Macartney, and H. Tschesche, Characterisation of β1.-anti-collagenase from human plasma and its reaction with polymorphonuclear leukocyte collagenase by disulfide/thiol interchange, Eur. J. Biochem. 130: 85 1983.

    Article  PubMed  CAS  Google Scholar 

  35. H. W. Macartney, and H. Tschesche, Interaction of β1-anti-collagenase from human plasma with collagenases from various tissues and competition with α2-macroglobulin, Eur. J. Biochem. 130: 93 1983.

    Article  PubMed  CAS  Google Scholar 

  36. F. S. Steven, V. Podrazky, and S. Itzhaki, Evidence for the presence of a trypsin inhibitor within rabbit and mouse tumour cells, Biochim. Biophys. Acta 483: 211 1977.

    Article  PubMed  CAS  Google Scholar 

  37. B. Dewald, U. Bretz, and M. Baggiolini, Release of gelatinase from a novel secretory. Compartment of human neutrophils, J. Clin. Invest. 70: 518 1982.

    Article  PubMed  CAS  Google Scholar 

  38. C. B. Laurell, and S. Eriksson, The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency, Scand. J. Clin. Invest. 15: 132 1963.

    CAS  Google Scholar 

  39. E. Munthe, E. Kass, and E. Jellum, Glutathione in erythrocytes: a parameter of change in disease activity and response to drugs in rheumatoid arthritis, in: “Inflammation: Mechanism and Treatment,” Proc. 4th Int. Meet. Future Trends Inflammation — London 1980, D. A. Willoughby, J. Giround, eds., MTP Press, Lancaster (1980).

    Google Scholar 

  40. M. Haataja, Serum sulphydryl levels in rheumatoid patients treated with gold thiomalate and pluicillamine, Scand. J. Rheumatol. 4: 7 1975.

    Article  Google Scholar 

  41. J. Chayen, L. Bitensky, R. G. Butcher, and L. W. Poulter, Redox control of lysosomes in human synovia, Nature 222: 281 1969.

    Article  PubMed  CAS  Google Scholar 

  42. J. Chayen, L. Bitensky, R. G. Butcher, and B. Cashman, The effect of experimentally induced redox changes on human rheumatoid and non-rheumatoid synovial tissue in vitro, Beitr. Pathol. 149: 127 1973.

    Article  PubMed  CAS  Google Scholar 

  43. U. Liipke, W. Rautenberg, and H. Tschesche, Kininogenase from human polymorphonuclear leukocytes., in.: “Recent Progr. Kinins,” Internat. Conf. Kinin GI. Munich, H. Fritz, H. Dietze, F. Fiedler, G. L. Haberland, eds., Birkhäuser Verlag, Basel — Boston — Stuttgart (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Tschesche, H. (1984). Structure and Function of Natural Inhibitors as Antagonists of Proteinase Activities. In: Hörl, W.H., Heidland, A. (eds) Proteases. Advances in Experimental Medicine and Biology, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9355-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9355-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9357-7

  • Online ISBN: 978-1-4615-9355-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics