Skip to main content

Ca2 - Activated Proteinases, Protein Degradation and Muscular Dystrophy

  • Chapter
Proteases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 167))

Abstract

Progressive muscular dystrophies in man are characterised by muscle degeneration and weakness. A gradual loss of muscle tissue takes place until, in the late stages of most dystrophies (and particularly in the X-linked Duchenne type), very little functional muscle remains. During necrosis, there is a marked loss of both myofibrillar and soluble proteins from the muscle fibres. While the underlying causes may in part be related to membrane defects (1), alterations in protein turnover in the muscle tissue must be involved in the development of the condition to some extent. The level of protein in any tissue is determined, under steady state conditions, as a balance between the rate of protein synthesis and its rate of degradation. The observed loss of muscle mass in wasting disorders would appear then to be explained most readily by an increase in the rate of protein degradation and, indeed, such measurements have been made in patients with Duchenne dystrophy (2). However, the same net effect i.e. muscle degeneration, can be achieved as a result of a diminished rate of protein synthesis in muscle and very recently, measurements made in vivo with dystrophic boys have suggested that in all types of dystrophy, muscle protein synthesis is depressed and that there is little change in protein breakdown from the rates observed with unafflicted male patients (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Lucy, Is there a membrane defect in muscle and other cells? Br. Med. Bull. 36: 187 1980.

    PubMed  CAS  Google Scholar 

  2. R. O. McKeran, D. Halliday, and P. Purkiss, Increased myofibrillar protein catabolism in duchenne muscular dystrophy measured by 3-methyl histidine excretion in the urine, J. Neurol. Neurosurg. Psychiatr. 40: 979 1977.

    Article  PubMed  CAS  Google Scholar 

  3. M. J. Rennie, R. H. T. Edwards, D. J. Millward, S. L. Wolman, D. Halliday, and D. E. Matthews, Effects of duchenne muscular dystrophy on muscle protein synthesis, Nature 296: 165 1982.

    Article  PubMed  CAS  Google Scholar 

  4. J. Kay, Intracellular protein degradation, Biochem. Soc. Trans. 6: 789 1978.

    PubMed  CAS  Google Scholar 

  5. J. F. Riebow, and R. B. Young, Effects of leupeptin on protein turnover in normal and dystrophic chicken skeletal muscle cells in culture, Biochem. Med. 23: 316 1980.

    Article  PubMed  CAS  Google Scholar 

  6. K. Wildenthal, J. R. Wakeland, J. M. Ord, and J. T. Stull, Interference with lysosomal proteolysis fails to reduce cardiac myosin degradation, Biochem. Biophys. Res. Commun. 96: 793 1980.

    Article  PubMed  CAS  Google Scholar 

  7. P. J. Bates, G. A. Coetzee, and D. R. van der Westhuyzen, The degradation of endogenous and exogenous proteins in cultured smooth muscle cells. Biochim. Biophys. Acta. 719: 377 1982.

    Article  PubMed  CAS  Google Scholar 

  8. P. Libby, and A. L. Goldberg, The control and mechanism of protein breakdown in striated muscle: studies with selective inhibitors, in: “Degradative Processes in Heart and Skeletal Muscle,” K. Wildenthal, ed., Elsevier/North Holland (1980).

    Google Scholar 

  9. A. L. Goldberg, N. P. Strnad, and K. H. S. Swamy, Studies of the ATP dependence of protein degradation in cells and cell extracts, in: “Protein Degradation in Health and Disease,” D. C. Evered, J. Whelan, eds., CIBA Found. Symp. 75, Excerpta Medica, Amsterdam (1980).

    Google Scholar 

  10. A. L. Goldberg, and F. S. Boches, Oxidized proteins in erythrocytes are rapidly degraded by the adenosine triphosphate-dependent proteolytic system, Science 215: 1107 1982.

    Article  PubMed  CAS  Google Scholar 

  11. S. Rapoport, W. Dubiel, and M. Muller, Characteristics of an ATP-dependent proteolytic system of rat liver mitochondria, FEBS. Lett. 147: 93 1982.

    Article  PubMed  CAS  Google Scholar 

  12. B. Dahlmann, L. Kuehn, M. Rutschmann, I. Block, and H. Reinauer, Characterisation of two alkaline proteinases from rat skeletal muscle, in: “Proteinases and their Inhibitors, Structure, Function & Applied Aspects,” V. Turk, Lj. Vitale, eds., Pergamon Press, Oxford (1981).

    Google Scholar 

  13. T. Edmunds, and R. J. T. Pennington, Mast cell origin of “Myofibrillar Protease” of rat skeletal and heart muscle, Biochim. Biophys. Acta 661: 28 1981.

    Article  PubMed  CAS  Google Scholar 

  14. R. J. Beynon, and J. Kay, The interactivation of native enzymes by a neutral proteinase from rat intestinal muscle, Biochem. J. 173: 291 1978.

    PubMed  CAS  Google Scholar 

  15. J. Kay, R. F. Siemankowski, L. M. Siemankowski, and D. E. Goll, Degradation of smooth muscle myosin by trypsin-like serine proteinases, Biochem. J. 201: 267 1982.

    PubMed  CAS  Google Scholar 

  16. J. Kay, L. M. Siemankowski, R. F. Siemankowski, J. A. Greweling, and D. E. Goll, Degradation of myofibrillar proteins by trypsin-like serine proteinases, Biochem. J. 201: 279 1982.

    PubMed  CAS  Google Scholar 

  17. P. H. Sugden, The effects of calcium ions, ionophore A23187 and inhibition of energy metabolism on protein degradation in the rat diaphragm and epitrochlearis muscles in vitro, Biochem. J. 190: 593 1980.

    PubMed  CAS  Google Scholar 

  18. H. P. Rodemann, L. Waxman, and A. L. Goldberg, The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the calcium-activated protease, J. Biol. Chem. 257: 8716 1982.

    PubMed  CAS  Google Scholar 

  19. N. C. Kar, and C. M. Pearson, A calcium-activated neutral protease in normal and dystrophic human muscle, Clin. Chim. Acta 73: 293 1976.

    Article  PubMed  CAS  Google Scholar 

  20. W. R. Dayton, J. V. Schollmeyer, A. C. Chan, and C. E. Allen, Elevated levels of a calcium-activated muscle protease in rapidly atrophying muscles from vitamin E-deficient rabbits, Biochim. Biophys. Acta 584: 216 1977.

    Article  Google Scholar 

  21. W. R. Dayton, D. E. Goll, M. G. Zeece, R. M. Robson, and W. J. Reville, A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle, Biochemistry 15: 2150 1976.

    Article  PubMed  CAS  Google Scholar 

  22. W. R. Dayton, W. J. Reville, D. E. Goll, and M. H. Stromer, A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme, Biochemistry 15: 2159 1976.

    Article  PubMed  CAS  Google Scholar 

  23. A. Szpacenko, J. Kay, D. E. Goll, and Y. Otsuka, A different form of the Ca2+-dependent proteinase activated by micromolar levels of Ca2+, in: “Proteinases and their Inhibitors, Structure, Function and Applied Aspects,” V. Turk, Lj. Vitale, eds., Pergamon Press, Oxford (1981).

    Google Scholar 

  24. S. Tsuji, and K. Imahori, Studies on the Ca2+-activated neutral proteinase of rabbit skeletal muscle. The characterization of the 80K and the 30K subunits, J. Biochem. 90: 233 1981.

    PubMed  CAS  Google Scholar 

  25. T. Murachi, K. Tanaka, M. Hatanaka, and T. Murakami, Intra-cellular Ca2+-dependent protease (Calpain) and its high molecular weight endogenous inhibitor (Calpastatin), Adv. in Enz. Reg. 19: 407 1981.

    Article  CAS  Google Scholar 

  26. R. L. Mellgren, Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium, FEBS Lett 109: 129 1980.

    Article  PubMed  CAS  Google Scholar 

  27. W. R. Dayton, J. V. Schollmeyer, R. A. Lepley, and L. R. Cortes, A calcium-activated protease possibly involved in myofibrillar protein turnover. Isolation of a low-calcium-requiring form of the protease, Biochim. Biophys. Acta 659: 48 1981.

    Article  PubMed  CAS  Google Scholar 

  28. G. N. de Martino, Calcium-dependent proteolytic activity in rat liver: Identification of two proteases with different calcium requirements, Arch. Biochem. Biophys. 211: 253 1981.

    Article  PubMed  Google Scholar 

  29. A. Kishimoto, N. Kajikawa, H. Tabuchi, M. Shiota, and Y. Nishizuka, Calcium-dependent neutral proteases, widespread occurrence of a species of protease active at lower concentrations of calcium, J. Biochem. 90: 889 1981.

    PubMed  CAS  Google Scholar 

  30. T. Murakami, M. Hatanaka, and T. Murachi, The cytosol of human erythrocytes contains a highly Ca2+-sensitive thiol protease (Calpain I) and its specific inhibitor protein (Calpastatin), J. Biochem. 90: 1809 1981.

    PubMed  CAS  Google Scholar 

  31. E. Melloni, B. Sparatore, F. Salamino, M. Michetti, and S. Pontremoli, Cytosolic calcium dependent proteinase of human erythrocytes: Formation of an enzyme-natural inhibitor complex induced by Ca2+ ions, Biochem. Biophys. Res. Commun. 106: 731 1982.

    Article  PubMed  CAS  Google Scholar 

  32. M. F. Hardy, D. Mantle, and R. J. T. Pennington, Calcium-activated proteinases in human skeletal muscle, Biochem. Soc. Trans. 9: 219 1981.

    CAS  Google Scholar 

  33. S. Tsuji, S. Ishiura, M. Takahashi-Nakamura, T. Katamoto, K. Suzuki, and K. Imahori, Studies on a Ca2+-activated neutral proteinase of rabbit skeletal muscle. II. Characterization of sulfhydryl groups and a role of Ca2+ ions in this enzyme, J. Biochem. 90: 1405 1981.

    PubMed  CAS  Google Scholar 

  34. K. Suzuki, S. Tsuji, S. Kubota, Y. Kimura, and K. Imahori, Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions, J. Biochem. 90: 275 1981.

    PubMed  CAS  Google Scholar 

  35. S. Kubota, K. Suzuki, and K. Imahori, A new method for the preparation of a calcium activated neutral protease highly sensitive to calcium ions, Biochem. Biophys. Res. Commun. 100: 1189 1981.

    Article  PubMed  CAS  Google Scholar 

  36. S. Ishiura, H. Murofishi, K. Suzuki, and K. Imahori, Studies of a calcium-activated neutral protease from chicken skeletal muscle. I. Purification and characterisation, J. Biochem. 84: 225 1981.

    Google Scholar 

  37. J. L. Azanza, J. Raymond, J-M. Robin, P. Cottin, and A. Ducastaing, Purification and some physico-chemical and enzymic properties of a calcium ion-activated neutral proteinase from rabbit skeletal muscle, Biochem. J. 183: 339 1979.

    PubMed  CAS  Google Scholar 

  38. M. J. Wheelock, Evidence for two structurally different forms of skeletal muscle Ca2+-activated protease, J. Biol. Chem. 257: 12471 1982.

    PubMed  CAS  Google Scholar 

  39. K. Suzuki, S. Tsuji, S. Ishiura, Y. Kimura, S. Kubota, and K. Imahori, Autolysis of calcium-activated neutral protease of chicken skeletal muscle, J. Biochem. 90: 1787 1981.

    PubMed  CAS  Google Scholar 

  40. D. R. Hathaway, D. K. Werth, and J. R. Haeberle, Limited autolysis reduces the Ca2+ requirement of a smooth muscle Ca2+-activated protease, J. Biol. Chem. 257: 9072 1982.

    PubMed  CAS  Google Scholar 

  41. R. L. Mellgren, A. Repetti, T. C. Muck, and J. Easly, Rabbit skeletal muscle calcium-dependent protease requiring millimolar Ca2+ purification, subunit structure, and Ca2+-dependent autoproteolysis, J. Biol. Chem. 257: 7203 1982.

    PubMed  CAS  Google Scholar 

  42. J. Kay, Proteolysis-A degrading business but food for thought, Biochem. Soc. Trans. 10: 277 1982.

    PubMed  CAS  Google Scholar 

  43. E. Melloni, B. Sparatore, F. Salamino, M. Michetti, and S. Pontremoli, Cytosolic calcium dependent neutral proteinase of human erythrocytes: the role of calcium ions on the molecular and catalytic properties of the enzyme, Biochem. Biophys. Res. Commun. 107: 1053 1982.

    Article  PubMed  CAS  Google Scholar 

  44. P. Cottin, P. L. Vidalenc, and A. Ducastaing, Ca2+-dependent association between a Ca2+-activated neutral proteinase (CaANP) and its specific inhibitor, FEBS Lett. 136: 221 1981.

    Article  PubMed  CAS  Google Scholar 

  45. M. Takahashi-Nakamura, S. Tsuji, K. Suzuki, and K. Imahori, Purification and characterization of an inhibitor of calcium-activated neutral protease from rabbit skeletal muscle, J. Biochem. 90: 1583 1981.

    PubMed  CAS  Google Scholar 

  46. S. Ishiura, S. Tsuji, H. Murofushi, and K. Suzuki, Purification of an endogenous 68000-dalton inhibitor of a Ca2+-activated neutral protease from chicken skeletal muscle, Biochim. Biophys. Acta 701: 216 1982.

    Article  PubMed  CAS  Google Scholar 

  47. R. Barth, and J. S. Elce, Immunofluorescent localization of a Ca2+-dependent neutral protease in hamster muscle, Am. J. Physiol. 240: E493 1981.

    PubMed  CAS  Google Scholar 

  48. W. R. Dayton, and J. V. Schollmeyer, Immunocytochemical localization of a calcium-activated protease in skeletal muscle cells, Exper. Cell. Res. 136: 423 1981.

    Article  CAS  Google Scholar 

  49. G. A. Puca, E. Nola, V. Sica, and F. Bresciani, Estrogen binding proteins of calf thymus, molecular and functional characterization of the receptor transforming factor: a Ca2+-activated protease, J. Biol. Chem. 252: 1358 1977.

    PubMed  CAS  Google Scholar 

  50. W. V. Vedeckis, M. R. Freeman, W. T. Schrader, and B. W. O’ Malley, Progesterone-binding components of chick oviduct: partial purification and characterization of a calcium-activated protease which hydrolyzes the progesterone receptor, Biochemistry, 19: 335 (1980).

    Article  PubMed  CAS  Google Scholar 

  51. N. C. Collier, and K. Wang, Purification and properties of human platelet P235. A high molecular weight protein substrate of endogenous calcium-activated protease(s), J. Biol. Chem. 257: 6937 1982.

    PubMed  CAS  Google Scholar 

  52. S. M. Tahara, and J. A. Traugh, Differential activation of two protease-activated protein kinases from reticulocytes by a Ca2+-stimulated protease and identification of phosphorylated translational components, Eur. J. Biochem. 126: 395 1982.

    Article  PubMed  CAS  Google Scholar 

  53. T. Tashiro, and Y. Ishizaki, A calcium-dependent protease selectively degrading the 160 000 Mr component of neurofilaments is associated with the cytoskeletal preparation of the spinal cord and has an endogenous inhibitory factor, FEBS Lett, 141: 41 (1982).

    Article  PubMed  CAS  Google Scholar 

  54. U. J. P. Zimmerman, and W. W. Schlaepfer, Characterization of a brain calcium-activated protease that degrades neurofilament proteins, Biochemistry 21: 3977 1982.

    Article  PubMed  CAS  Google Scholar 

  55. W. J. Nelson, and P. Traub, Purification and further characterization of the Ca2+-activated proteinase specific for the intermediate filament proteins vimentin and desmin, J. Biol. Chem. 257: 5544 1982.

    PubMed  CAS  Google Scholar 

  56. K. Suzuki, and S. Tsuji, Synergistic activation of calcium-activated neutral protease by Mn2+ and Ca2+, FEBS Lett. 140: 16 1982.

    Article  PubMed  CAS  Google Scholar 

  57. K. W. Gerard, and D. L. Schneider, Protein turnover in muscle: Inhibition of the calcium activated proteinase by mersalyl without inhibition of the rate of protein degradation, Biochem. Biophys. Res. Commun. 94: 1353 1980.

    Article  PubMed  CAS  Google Scholar 

  58. H. P. Rodemann, and A. L. Goldberg, Arachidonic acid, prostaglandin E2 and F2α influence rates of protein turnover in skeletal and cardiac muscle, J. Biol. Chem. 257: 1632 1982.

    PubMed  CAS  Google Scholar 

  59. J. A. Truglia, and A. Stracher, Purification and characterization of a calcium dependent sulfhydryl protease from human platelets, Biochem. Biophys. Res. Commun. 100: 814 1981.

    Article  PubMed  CAS  Google Scholar 

  60. S. Rosenberg, A. Stracher, and R. C. Lucas, Isolation and characterization of actin and actin binding protein from human platelets, J. Cell. Biol. 91: 201 1981.

    Article  PubMed  CAS  Google Scholar 

  61. S. Ishiura, Calcium-dependent proteolysis in living cells, Life Sci. 29: 1079 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Kay, J. (1984). Ca2 - Activated Proteinases, Protein Degradation and Muscular Dystrophy. In: Hörl, W.H., Heidland, A. (eds) Proteases. Advances in Experimental Medicine and Biology, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9355-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9355-3_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9357-7

  • Online ISBN: 978-1-4615-9355-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics