Skip to main content

Proteolytic Activity in Patients with Hypercatabolic Renal Failure

  • Chapter
Proteases

Abstract

Despite several advances in dialysis and medical therapy, the mortality rate for patients with acute renal failure (ARF) remains distressingly high. When ARF is associated with major surgery or trauma, the mortality rate is about 50 to 70 % Such patients are often hypercatabolic as a result of sepsis, hemorrhage, or open-draining wounds. They may be wasted or malnourished from underlying illnesses. Losses of glucose, amino acids and proteins during hemodialysis or peritoneal dialysis contribute to wasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Abel, C. H. Beck, Jr., W. M. Abbott, J. A. Ryan, Jr., G. O. Barnett, and J. E. Fischer, Improved survival and acute renal failure after treatment with intravenous essential Lamino acids and glucose, N. Engl. J. Med. 288: 695 1973.

    Article  PubMed  CAS  Google Scholar 

  2. M. J. Blumenkrantz, J. D. Kopple, A. Koffler, A. K. Kamdar, M. D, Healy, E. I. Feinstein, and S. G. Massry, Total parenteral nutrition in the management of acute renal failure, Am. J. Clin. Nutr. 31: 1831 1978.

    PubMed  CAS  Google Scholar 

  3. W. H. Hörl, and A. Heidland, Enhanced proteolytic activity — cause of protein catabolism in acute renal failure, Am, J. Clin. Nutr. 33: 1423 1980.

    Google Scholar 

  4. W. H.öl. J. Stepinski, C. Gantert, and A. Heidland, Evidence for the participation of proteases on protein catabolism during hypercatabolic renal failure, Klin. Wochenschr. 59: 751 1981.

    Article  PubMed  Google Scholar 

  5. W. H. Hörl, C. Gantert, I. O. Auer, and A. Heidland, In vitro inhibition of protein catabolism by alpha2-macroglobulin in plasma from a patient with posttraumatic acute renal failure, Am. J. Nephrol. 2: 32 1982.

    Article  PubMed  Google Scholar 

  6. W. H. Hörl, J. Stepinski, and A. Heidland, Further evidence for the participation of proteases in protein catabolism during hypercatabolic renal failure, in: “Acute Renal Failure,” H. E. Eliahou, ed., John Libbey, London (1982).

    Google Scholar 

  7. W. H. Hörl, R. M. Schäfer, and A. Heidland, Role of urinary alpha1-antitrypsin in Padutin (kallikrein) inactivation, Eur. J. Clin. Pharmacol. 225: 541 1982.

    Article  Google Scholar 

  8. K. Weber, and M. Osborn, The reliability of molecular weight determinations by dodecylsulfate polyacrylamide gel electrophoresis, J. Biol. Chem. 244: 4406 1969.

    PubMed  CAS  Google Scholar 

  9. S. Neumann, N. Hennrich, G. Gunzer, and H. Lang, Enzyme-linked immunoassay for human granulocyte α1-proteinase inhibitor complex, in: “Progress in Clinical Enzymology — II,” D. M. Goldberg, M. Werner, eds., Masson Publ., New York (1983) in press.

    Google Scholar 

  10. C. B. Laurell, and I. O. Jeppson, Protease inhibitors in plasma, in: “The Plasma Proteins,” F. W. Putnam, ed., Academic Press, New York, San Francisco, London (1975).

    Google Scholar 

  11. G. Balldin, C. B. Laurell, and K. Ohlsson, Increased catabolism of α-macroglobulins after intravenous infusion of trypsin-α1-antitrypsin complexes in dogs, Hoppe-Seyler’s Z. Physiol. Chem. 359: 699 1978.

    PubMed  CAS  Google Scholar 

  12. E. L. Gustavsson, K. Ohlsson, and A. S. Olsson, Interaction between human pancreatic elastase and plasma protease inhibitors, Hoppe-Seyler’s Z. Physiol. Chem. 361: 169 1980.

    Article  PubMed  CAS  Google Scholar 

  13. G. Balldin, K. Ohlsson, and A. S. Olsson, Studies on the influence of Trasylol on the partition of trypsin between the human plasma protease inhibitors in vitro, Hoppe-Seyler’s Z. Physiol. Chem. 359: 691 1978.

    PubMed  CAS  Google Scholar 

  14. W. H, Hörl, J. Stepinski, R. M. Schäfer, and A, Heidland, Role of proteases in hypercatabolic patients with renal failure, Kidney int. in press (1983).

    Google Scholar 

  15. P. Farrell, and P. Hone, Dialysis-induced catabolism, Am. J. Clin. Nutr. 33: 1417 1980.

    PubMed  CAS  Google Scholar 

  16. F. Gotch, M. Borah, M. Keen, and J. Sargent, The solute kinetics of intermittent dialysis therapy (IDT), Proc. Ann. Contractors Conf. Artif. Kidney Program NIAMDD 10: 105 1977.

    Google Scholar 

  17. P. Craddock, J. Fehr, A. Dalmasso, K. Brigham, and H. Jacob, Hemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes, J. Clin. Invest. 59: 879 1977.

    Article  PubMed  CAS  Google Scholar 

  18. J. Blondin, and A. Janoff, The role of lysosomal elastase in the digestion of Escherichia coli proteins by human polymorphonuclear leukocytes, J. Clin. Invest. 58: 971 1976.

    Article  PubMed  CAS  Google Scholar 

  19. A. Janoff, and J. Scherer, Mediators of inflammation in leukocyte lysosomes, IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes, J, Exp. Med. 128: 1137 (1968).

    Article  CAS  Google Scholar 

  20. R. Rindler, F. Schmalzl, und H. Braunsteiner, Isolierung und Charakterisierung der chymotrypsinähnlichen Protease aus neutrophilen Granulozyten des Menschen, Schweiz. Med. Wschr. 104: 132 1974.

    PubMed  CAS  Google Scholar 

  21. M. Baggiolini, U. Bretz, and B. Dewald, Subcellular localization of granulocyte enzymes, in: “Neutral Proteases of Human Polymorphonuclear Leukocytes,” K. Havemann, A. Janoff, eds., Urban and Schwarzenberg, Baltimore/Munich (1978).

    Google Scholar 

  22. G. Lazarus, J. Daniels, R. Brown, H. Bladen, and H. Fullmer, Degradation of collagen by a human collagenolytic system, J. Clin. Invest. 47: 2622 1968.

    Article  PubMed  CAS  Google Scholar 

  23. K. Ohlsson, and J. Olsson, The neutral proteases of human granulocytes. Isolation and partial characterization of two granulocyte collagenases, Europ. J. Biochem. 36: 473 1973.

    Article  PubMed  CAS  Google Scholar 

  24. U. Bretz, and M. Baggiolini, Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes, J. Cell. Biol. 63: 251 1974.

    Article  PubMed  CAS  Google Scholar 

  25. G. Murphy, S. Reynolds, U. Bretz, and M. Baggiolini, Collagenase is a component of the specific granules of human neutrophil leukocytes, Biochem. J. 162: 195 1977.

    PubMed  CAS  Google Scholar 

  26. A. Janoff, J. Blondin, R. Sandhaus, A. Mosser, and C. Malemud, Human neutrophil elastase: in vitro effects on natural substrates suggest important physiological and pathological action, in: “Proteases and Biological Control,” E. Reich, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (1975).

    Google Scholar 

  27. J. Smolen, and G. Weissmann, The granulocyte: Metabolic properties and mechanisms of lysosomal enzyme release, in: “Neutral Proteases of Human Polymorphonuclear Leukocytes,” K. Havemann, A. Janoff, eds., Urban and Schwarzenberg, Baltimore/Munich (1978).

    Google Scholar 

  28. A. Janoff, and J. Zeligs, Vascular injury and lysis of basement membrane in vitro by neutral protease of human leukocytes, Science 161: 702 1968.

    Article  PubMed  CAS  Google Scholar 

  29. C. Cochrane, and A. Janoff, The Arthus reaction. A model of neutrophil and complement mediated injury, in: “The Inflammatory Process,” B. W. Zweifach, L. Grant, R. T. McCluskey, eds., Academic Press, New York, San Francisco, London (1974).

    Google Scholar 

  30. A. O. Aasen, and K. Ohlsson, Release of granulocyte elastase in lethal canine endotoxin shock, Hoppe-Seyler’s Z. Physiol. Chem. 359: 683 1978.

    PubMed  CAS  Google Scholar 

  31. J. Travis, P. Giles, L. Porcelli, C. Reilly, R. Baugh, and J. Powers, Human leukocyte elastase and cathepsin G: structural and functional characteristics, in: “Protein Degradation in Health and Disease,” Ciba Foundation Symposium 75, Excerpta Medica, Amsterdam, Oxford, New York (1980).

    Google Scholar 

  32. G. Francis, S. Knowles, and F. Ballard, Inactivation of cytosol enzymes by a liver membrane protein, in: “Protein Degradation in Health and Disease,” Ciba Foundation Symposium 75, Excerpta Medica, Amsterdam, Oxford, New York (1980).

    Google Scholar 

  33. D. Johnson, and J. Travis, Structural evidence for methionine at the reactive site of human α1-proteinase inhibitor, J. Biol. Chem. 253: 7142 1978.

    PubMed  CAS  Google Scholar 

  34. H. Carp, and A. Janoff, In vitro suppression of serum elastase inhibitory capacity by reactive oxygen species generated by phagocytosing polymorphonuclear leukocytes, J. Clin. Invest. 63: 793 (1979).

    Article  PubMed  CAS  Google Scholar 

  35. A. Cohen, The effects in vivo and in vitro of oxidative damage to purified alpha1-antitrypsin and to the enzyme inhibiting activity of plasma. Am. Rev. Respir. Pis. 119: 953 1979.

    CAS  Google Scholar 

  36. N. Matheson, P. Wong, and J. Travis, Enzymatic inactivation of human alpha1-proteinase inhibitor by neutrophil myeloperoxidase. Biochem. Biophys. Res. Commun. 88: 402 1979.

    Article  PubMed  CAS  Google Scholar 

  37. J. Gadek, G. Fells, R. Zimmerman, S. Rennard, and R. Crystal, Antielastases of the human alveolar structures. Implications for the protease-antiprotease theory of emphysema, J. Clin Invest. 68: 889 1981.

    Article  PubMed  CAS  Google Scholar 

  38. W. H. Hörl, M. Jochum, A. Heidland, and H. Fritz, Release of granulocyte proteinases during hemodialysis, Am. J. Nephrol. in press (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Hörl, W.H., Schäfer, R.M., Scheidhauer, K., Jochum, M., Heidland, A. (1984). Proteolytic Activity in Patients with Hypercatabolic Renal Failure. In: Hörl, W.H., Heidland, A. (eds) Proteases. Advances in Experimental Medicine and Biology, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9355-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9355-3_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9357-7

  • Online ISBN: 978-1-4615-9355-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics