Anionic Polymerization IX: A Review of the Use of Crown Ether as a Modifier in the Anionic Polymerization and Copolymerization of Diene

  • Tai Chun Cheng
Part of the Polymer Science and Technology book series (POLS)


Ever since Petersen reported the complexing ability of the crown ether with alkali, alkaline earth and other cations, crown ether became a major subject for researchers. This is due to the fact that crown ether possesses the ability to form complexes with a variety of inorganic salts and also the ability to solubilize these salts in aprotic solvents. The complexation between metal cation and crown ether is believed to involve ion-dipole interactions and therefore is similar in nature to ordinary solvation. In addition, crown ether/metal cation complexes can serve as catalysts in reactions involving ionic intermediates. Polymerization of diene with crown ether/metal cation complexes is a typical example of this subject, since this reaction involves ionic intermediates. The detailed information including a brief history, chemical properties of crown ether and its application in the anionic polymerization and copolymerization have been discussed.


Crown Ether Anionic Polymerization Sodium Metal Ionic Intermediate Broad Molecular Weight Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A, Morton and E. Grovenstein, Jr., J. Am.Chem. Soc., 74, 5434 (1952).CrossRefGoogle Scholar
  2. 2.
    T. C. Cheng, A. F. Halasa, D. P. Tate, J. Polymer Sci., A-l, 9, 2493 (1971).CrossRefGoogle Scholar
  3. 3.
    C. J. Petersen, J. Am. Chem. Soc., 89, 7017 (1967).CrossRefGoogle Scholar
  4. 4.
    Chem. Eng. News, 48 (9), 26 (1970).Google Scholar
  5. 5.
    Ruggli, Ann. 392, 92 (1912).Google Scholar
  6. 6.
    A. Luttringhaus and K. Ziegler (1937).Google Scholar
  7. 7.
    A. Luttringhaus, Ann. 528, 181 (1937).Google Scholar
  8. 8.
    A. Luttringhaus, Ann. 528, 211 (1937).Google Scholar
  9. 9.
    A. Luttringhaus, Ann. 528, 223 (1937).Google Scholar
  10. 10.
    A. Luttringhaus and I. Sichert-Modrow, Makromol Chem., 18–19, 511 (1956).CrossRefGoogle Scholar
  11. 11.
    R. G. Ackman, W. H. Brown and G. F. Wright, J. Org. Chem 20, 1147 (1955).CrossRefGoogle Scholar
  12. 12.
    D. G. Stewart, D. Y. Waddan and E. T. Borrows, British Patent, 785, 229 (1957).Google Scholar
  13. 13.
    J. L. Down, J. Lewis, B. Moore and G. W. Wilkinson, Proc. Chem. Soc., 209 (1957).Google Scholar
  14. 14.
    J. L. Down, J. Lewis, B. Moore and G. W. Wilkinson, J. Chem. Soc., 3767 (1959).Google Scholar
  15. 15.
    C. J. Petersen, J. Am. Chem. Soc. 89, 7017 (1967).CrossRefGoogle Scholar
  16. 16.
    C. J. Petersen, Fed. Proc. Fed. Am. Soc. Exp. Biol., 27, 1305 (1968).Google Scholar
  17. 17.
    C. J. Petersen, J. Am. Chem. Soc., 92, 386 (1970).CrossRefGoogle Scholar
  18. 18.
    C. J. Petersen and H. K. Frensdorff, Angew. Chem. Internat. Edit., 11 (1), 16 (1972).CrossRefGoogle Scholar
  19. 19.
    R. N. Greene, Tetrahedron Letters, 18, 1793 (1972).CrossRefGoogle Scholar
  20. 20.
    F. Wada and T. Matsuda, Bull. Chem. Soc. Jpn., 53, 421 (1980).CrossRefGoogle Scholar
  21. 21.
    M. Tomoi, O. Abe, M. Ikeda, K. Kihara and H. Kabinchi, Tetrahedron Letters, 33, 3031 (1978).Google Scholar
  22. 22.
    A. Warshawsky, R. Kaliv, A. Deske, H. Berkovitz and A. Patchovonik, J. Am. Chem. Soc., 101, 4249 (1979).CrossRefGoogle Scholar
  23. 23.
    D. N. Reinhoudt, R. T. Gray, C. J. Smit and I. Veenstra, Tetrahedron 32, 1161 (1976).CrossRefGoogle Scholar
  24. 24.
    K. H. Wang, G. Konizer and J. Smid, J. Am. Chem. Soc., 92, 666 (1970).CrossRefGoogle Scholar
  25. 25.
    J. Almy, D. C. Garwood and D. J. Cram, J. Am. Chem. Soc., 92, 4321 (1970).CrossRefGoogle Scholar
  26. 26.
    S. Boilean, B. Kaemf, J. M. Lehn and F. Schue, Polymer Letters, 13, 203 (1974).Google Scholar
  27. 27.
    T. C. Cheng and A. F. Halasa, J. Polymer Sei.; Polymer Chem. Ed., 14, 583 (1976).Google Scholar
  28. 28.
    S. Alev, F. Schire and B. Kaemf, Polymer Letters Ed., 13, 397 (1975).CrossRefGoogle Scholar
  29. 29.
    J. P. Kennedy and E. G. M. Tornquist, Polymer Chemistry of Synthetic Elastomers, Interscience, New York, 1969, Part II, p. 561.Google Scholar
  30. 30.
    T. C. Cheng and A. F. Halasa, J. Polymer Sci., Polymer Chem. Ed., 14, 573 (1976).CrossRefGoogle Scholar
  31. 31.
    T. C. Cheng, unpublished results.Google Scholar
  32. 32.
    R. V. Basova, et al, Proc Acad. Sci., USSR, 149, 312 (1963).Google Scholar
  33. 33.
    A. W. Meyer, J. Am. Chem. Soc., 74, 2294 (1952), and F. C. Foster and J. L. Binder, Handling and Use of Alkali Metals, 19, of Advances in Chemistry series, Am. Chem. Soc., Washington D.C., 1957, p. 26.Google Scholar
  34. 34.
    A. Rembaum, F. R. Ells and R. C. Morrow and A. V. Tobolsky, J. Polymer Sci., 61, 155 (1962).CrossRefGoogle Scholar
  35. 35.
    A. T. Tsatsas, R. W. Stearns, and W. M. Risen, J. Am. Chem. Soc., 94, 5247 (1972).CrossRefGoogle Scholar
  36. 36.
    T. A. Antkowiak, A. E. Obesta, A. F. Halasa and P. P. Tate, J. Polymer Sci., A-l, 10, 1319 (1972).CrossRefGoogle Scholar
  37. 37.
    S. N. Ushakov and P. A. Matuzov, Zh. Obshch. Khim., 17, 435 (1944).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Tai Chun Cheng
    • 1
    • 2
  1. 1.Corporate R&D Raychem CorporationMenlo ParkUSA
  2. 2.Central Research LaboratoryFirestone Tire and Rubber CompanyAkronUSA

Personalised recommendations