Skip to main content

Critical Processes in CNS Development and the Pathogenesis of Early Injuries

  • Chapter
Reproductive and Developmental Toxicity of Metals

Abstract

Though mercury and lead exposure are known to be more injurious to developing CNS than mature CNS, the nature of the difference is not understood. If the only difference is in accumulation or retention of the toxic agents, then it should be possible to apply the same tests of toxicity, no matter when exposure occurs. On the other hand, if developing tissue responds to metals in ways that mature tissue does not, then the nature of the injury may be different in subjects exposed at different times. In this case, the measures best suited to detect adult toxicity might be inappropriate to detect toxicity after early exposure. One way to evaluate whether metals interfere with development is to test the integrity of processes which occur only in developing CNS. There is already some evidence that mercury and/or lead alter several such processes. Neuron proliferation, formation of glia and myelin, cell migration, development of connections, and differentiation of transmitter characteristics all have been reported to be affected by early exposure to metals. Interruption of these developmental events by other teratogens has been shown to cause permanent alterations in nervous system form and function. The experimental paradigms necessary to demonstrate failures in developmental processes are not necessarily the same as those used in general toxicity testing. Therefore, it would be useful to apply more varied experimental approaches to the questions surrounding metal effects on developing nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, G.E. and Goldman, P.S., 1978, Functional development of the dorsolateral prefrontal cortex: An analysis utilizing reversible cryogenic depression, Brain Res. 143: 223–249.

    Article  Google Scholar 

  • Altman, J. and Anderson, W.J., 1971, Irradiation of the cerebellum in infant rats with low level x-ray: histological and cytological effects during infancy and adulthood, Exper. Neurol. 30: 492–509

    Article  CAS  Google Scholar 

  • Altman, J. and Bayer, S.A., 1978, Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus, J. Comp. Neurol. 182: 945–972.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J., Anderson, W.J. and Wright, K.A., 1968, Gross morphological consequences of irradiation of the cerebellum in infant rats with repeated doses of low level x-ray, Exper. Neurol. 21: 69–91.

    Article  Google Scholar 

  • Andreoli, J., Rodier, P.M. and Langman, J., 1973, The influence of a prenatal trauma on formation of Purkinje cells, Am. J. Anat. 137: 87–102.

    Article  PubMed  CAS  Google Scholar 

  • Amin-Zaki, L., Elhassani, S., Majeed, M.A., Clarkson, T.W., Doherty, R.A. and Greenwood, M., 1974, Intrauterine methylmercury poisoning in Iraq, Pediatrics 54: 587–594.

    PubMed  CAS  Google Scholar 

  • Averill, D.R. and Needleman, H.L., 1980, Neonatal lead exposure retards cortical synaptogenesis in the rat, in. “Low Level Lead Exposure: The Clinical Implications of Current Research”, H.L. Needleman, ed., pp. 201–210, Raven Press, New York.

    Google Scholar 

  • Bass, M.A., Netsky, M.G., Young, E., 1970, Effect of neonatal malnutrition on developing cerebrum, I. Microchemical and histologic study of cellular differentiation in the rat, Arch. Neurol. 23: 289–302.

    Article  PubMed  CAS  Google Scholar 

  • Berry, M. and Rogers, A.W., 1965, The migration of neuroblasts in the developing cerebral cortex, J. of Anat. 99: 691–709.

    CAS  Google Scholar 

  • Black, I.B., 1982, Stages of neurotransmitter development in autonomic neurons, Science 215: 1198–1204.

    Article  PubMed  CAS  Google Scholar 

  • Borisy, G.G. and Taylor,W., 1967, The mechanism of action of colchicine. Colchicine binding to sea urchin eggs to the mitotic apparatus, J. Cell Biol. 34: 535–548.

    Article  PubMed  CAS  Google Scholar 

  • Buell, S.J. and Coleman, P.D., 1981, Quantitative evidence for selective dendritic growth in normal human aging but not in senile dementia, Brain Res. 214: 23–41.

    Article  PubMed  CAS  Google Scholar 

  • Chase, H.P., Dorsey, J. and McKhann, G.M., 1967, The effect of malnutrition on the synthesis of a myelin lipid, Pediatrics 40: 551–559.

    PubMed  CAS  Google Scholar 

  • Choi, B.H., Lapham, L.W., Amin-Zaki, L. and Saleem, T., 1978, Abnormal neuronal migration, deranged cerebral cortical organization and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero, J. Neuropath, and Exp. Neurol. 37: 719–733.

    Article  CAS  Google Scholar 

  • Cios, J., Crepel, F., Legrande, C., Legrande, J., Rabie, J. and Vigourouz, E., 1974, Thyroid physiology during the postnatal period in the rat: A study of the development of thyroid function and of the morphogenetic effects of thyroxine with special references to cerebellar maturation, Gen. Comp. Endocrinol. 23: 178–192.

    Article  Google Scholar 

  • Clos, J., Favre, C., Selme-Matrat, M. and Legrande, J., 1977, Effects of undernutrition on cell formation in the rat brain and specially on cellular composition of the cerebellum, Brain Res. 123: 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, A.M., 1972, Factors direcing the expression of sympathetic nerve traits in cells of neural crest origin, J. Exp. Zool. 179: 167–182.

    Article  PubMed  CAS  Google Scholar 

  • Das, G.D., 1977, Gliogenesis during embryonic development in the rat, Experientia 33: 1648–1649.

    Article  PubMed  CAS  Google Scholar 

  • Dobbing, J. and Sands, J., 1973, Quantitative growth and development of human brain, Arch. Child. 48: 757–767.

    Article  CAS  Google Scholar 

  • Eccles, C.U. and Annau, Z., 198Za, Prenatal methylmercury exposure: I. Alterations in neonatal activity, Neurobehav. Tox. and Terat. 4: 371–376.

    Google Scholar 

  • Eccles, C.U. and Annau, Z., 1982b, II. Alterations in learning and psychotropic drug sensitivity in adult offspring, Neurobehav. Tox. and Terat. 4: 377–382.

    CAS  Google Scholar 

  • Fazekas, J.R., Alexander, F.A.D. and Himwich, H.E., 1941, Tolerance of the newborn to anoxia, Am. J. Physiol. 134: 281–287.

    CAS  Google Scholar 

  • Furchtgott, E. and Echols, M., 1958, Activity and emotionality in pre- and neonatally x-irradiated rats, J. Comp. Physiol. Psych. 51: 541–545.

    Article  CAS  Google Scholar 

  • Glass, H. and Snyder, F.F., 1942, The increased tolerance to anoxia of animals born prematurely, Anat. Rec. 82: 465–466.

    Google Scholar 

  • Harada, Y., 1977, Congenital Minamata disease, in: “Minamata Disease”, K. Tsubaki and K. Irukayama, eds., pp. 209–239, Elsevier, Amsterdam/New York.

    Google Scholar 

  • Harada, M., 1978, Congenital Minamata disease: intrauterine methylmercury poisoning, Teratology 18: 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Hogan, R.N. and Coleman, P.D., 1981a, Experimental hyperphenylalaninemia: Dendritic alterations in motor cortex of rat, Exp. Neurol. 74: 218–233.

    Article  PubMed  CAS  Google Scholar 

  • Hogan, R.N. and Coleman, P.D., 1981b, Experimental hyperphenylalaninemia: Dendritic alterations in cerebellum of rat, Exp. Neurol., 74: 234–244.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N. and LeVay, S., 1975, Functional architecture of area 17 in normal monocularly deprived macaque monkeys, Cold Spring Harbor Symp. Quant. Biol. 15: 581–590.

    Google Scholar 

  • Imura, N., Miura, K., Inokawa, M. and Nakada, S., 1980, Mechanism of methylmercury cytotoxicity: By biochemical and morphological experiments using cultured cells, Toxicol. 17: 244–254.

    Article  Google Scholar 

  • Jason, K. and Kellogg, C., 1977, Lead effects on behavioral and neurochemical development in rats, Federation Proc. 36: 1008.

    Google Scholar 

  • Johnston, M.V. and Coyle, J.T., 1979, Ontogeny of neurochemical markers for noradrenergic, GABA ergic and cholinergic neurons in neocortex lesioned with methylazoxymethanol acetate, J. Neurochem. 34: 1429–1441.

    Article  Google Scholar 

  • Johnston, M.V., Grzanna, R. and Coyle, J.T., 1979, Methylazoxymethanol treatment of fetal rats results in abnormally dense noradrenergic intervation of neocortex, Science 203: 369–371.

    Article  PubMed  CAS  Google Scholar 

  • Khera, K.S., Iverson, F., Hierlihy, L., Tanner, R. and Trivitt, G., 1975, Toxicity of methylmercury in neonatal cats, Teratology 10: 69–76.

    Article  Google Scholar 

  • Korr, H., Schultz, B. and Maurer, W., 1975, Autoradiographic investigations of glial proliferation in the brain of adult mice, II. Cycle time and mode of proliferation of neuroglia and endothelial cells, J. Comp. Neurol. 160: 477–490.

    Article  PubMed  CAS  Google Scholar 

  • Krigman, M.R., Druse, J.J., Taylor, T.D., Wilson, M.H., Newell, L.R. and Hogan, E.L., 1974, Lead encephalopathy in the developing rat: Effect on cortical ontogenesis, J. Neuropath. Exp. Neurol. 33: 671–686.

    Article  PubMed  CAS  Google Scholar 

  • Lauder, J.M. and Krebs, H., 1978, Serotonin as a differentiation signal in early neurogenesis, Dev. Neurosci. 1: 15–30.

    Article  PubMed  CAS  Google Scholar 

  • Langman, J. and Shimada, M., 1971, Cerebral cortex of mouse after a prenatal chemical insult, Am. J. Anat. 132: 355–374.

    Article  PubMed  CAS  Google Scholar 

  • Langman, J., Shimada, M. and Rodier, P.M., 1972, Floxuridine (5 FUdR) and its influence on postnatal cerebellar development, Ped. Res. 6: 758–764.

    Article  CAS  Google Scholar 

  • LeDouarin, N.M. and Teillet, M.A., 1973, The migration of neural crest cells to the wall of the digestive tract in avian embryo, J. Embryo. Exp. Morphol. 30: 31–48.

    CAS  Google Scholar 

  • Lewis, P.D., Balazs, R., Patel, A.J. and Johnson, A.L., 1975, The effect of undernutrition in early life on cell generation in the rat brain, Brain Res. 83: 235–247.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, P.D., Patel, A.J., Johnson, A.L. and Balazs, R., 1976, Effect of thyroid hormone deficiency on cell acquisition in the postnatal rat brain: A quantitative histological study, Brain Res. 104: 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R., Meyer, H. and Hamburger, V., 1954, In vitro experiments on the effects of mouse sarcoma 180 and 37 on the spinal and sympathetic ganglia of the chick embryo, Cancer Res. 14: 49–57.

    PubMed  CAS  Google Scholar 

  • McMahon, D., 1974, Chemical messengers in development: A hypothesis, Science 185: 1012–1021.

    Article  PubMed  CAS  Google Scholar 

  • Miale, I.L. and Sidman, R.L., 1961, An autoradiographic analysis of histogenesis in the mouse cerebellum, Exper. Neurol. 4: 277–296.

    Article  CAS  Google Scholar 

  • Naeye, R.L. and Blanc, W., 1965, Pathogenesis of congenital rubella, J. Am. Med. Assn. 194: 1277–1283.

    Google Scholar 

  • Oppenheim, R.W., 1974, The ontogeny of behavior in the chick embryo, in: “Advances in the Study of Behavior”, D.S. Lehrman, J.S. Rosenblatt, R.A. Hinde, and E. Shaw, eds., pp. 133–171, Academic Press, New York.

    Google Scholar 

  • Pentschew, A. and Garro, F., 1966, Lead encephalomyelopathy of suckling rats and its implications on the porphyrinopathic nervous diseases, Acta Neuropathol. 6: 266–278.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1971, Neuron-glia relationship during granule cell migration in developing cerebellar cortex: A Golgi and electromicroscopic study in Macacus rhesus, J. Comp. Neurol. 141: 283–312.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1972, Mode of cell migration to the superficial layers of fetal monkey cortex, J. Comp. Neurol. 145: 61–84.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1977, Prenatal development of the visual system in rhesus monkey, Phil. Trans, of the Roy. Soc. London Series B 378: 245–260

    Article  Google Scholar 

  • Rodier, P.M., 1976, Critical periods for behavioral anomalies in mice, Env. Health Persp. 18: 79–83.

    Article  CAS  Google Scholar 

  • Rodier, P.M., 1980, Chronology of neuron development: Animal studies and their clinical implications, Devel. Med. Child Neurol. 22: 525–545.

    Article  CAS  Google Scholar 

  • Rodier, P.M. and Reynolds, S.S., 1977, Morphological correlates of behavioral abnormalities in experimental congenital brain damage, Exp. Neurol. 57: 81–93.

    Article  PubMed  CAS  Google Scholar 

  • Rodier, P.M. and Gramann, W.J., 1979, Morphologic effects of interference with CNS development in the early fetal period, Neurobehav. Toxicol. 1: 129–135.

    CAS  Google Scholar 

  • Rodier, P.M. Reynolds, S.S. and Roberts, W.N., 1979, Behavioral consequences of interference with CNS development in the early fetal period, Teratology 19: 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, T.P., Gershon, M.D and Holtzer, H., 1978, The relationship of cell division to the acquisition of adrenergic characteristics by developing sympathetic ganglion cell precursors, Dev. Biol. 65: 322–341.

    Article  PubMed  CAS  Google Scholar 

  • Sager, P., Doherty, R.A. and Rodier, P.M., 1982, Effects of methylmercury on developing mouse cerebellar cortex, Exp. Neurol. 77: 179–193.

    Article  PubMed  CAS  Google Scholar 

  • Silbergeld, E.K. and Hruska, R.E., 1980, Neurochemical investigations of low level lead exposure, in. “Low Level Exposure: The Clinical Implications of Current Research”, H.L. Needleman, ed., pp. 135–157, Raven Press, New York.

    Google Scholar 

  • Takeuchi, T. and Eto, K., 1977, Pathology and pathogenesis of Minamata disease, vrr. “Minamata Disease”, K. Tsubaki, and K. Irukayama, pp. 103–141, Elsevier, Amsterdam/New York.

    Google Scholar 

  • Vorhees, C.V., Brunner, R.L. and Butcher, R.E., 1979, Psychotropic drugs as behavioral teratogens, Science 205: 1220–1225.

    Article  PubMed  CAS  Google Scholar 

  • Webster, W.S., Shimada, M. and Langman, J., 1973, Effect of fluorodeoyuridine, colcemid, and bromodeoxyuridine on developing neocortex of the mouse, Am. J. Anat. 137: 67–86.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J.G., 1973, “Environment and Birth Defects”, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Rodier, P.M. (1983). Critical Processes in CNS Development and the Pathogenesis of Early Injuries. In: Clarkson, T.W., Nordberg, G.F., Sager, P.R. (eds) Reproductive and Developmental Toxicity of Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9346-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9346-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9348-5

  • Online ISBN: 978-1-4615-9346-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics