Skip to main content

Solvent Substitution as a Probe of Gating Processes in Voltage-Dependent Ion Channels

  • Chapter
Structure and Function in Excitable Cells

Abstract

Although it is widely accepted that ion transport across excitable membranes occurs via voltage-dependent ion-selective channels, and much has been learned about the microscopic events which occur prior to, during, and following activation of such channels, many important questions remain unresolved. For example, does the transient conductivity of channels arise from a relatively small alteration in the conformation of a preexisting structure (a “gate”), or is it due to a field-dependent activation of channel precursors, which must then interact locally to form a conducting pathway? Because the transmembrane electric field is the independent variable that controls permeability, activation of channels is likely to be triggered by some intramembrane charge movement, but what is the molecular origin of this displacement current and what relationship does it have to the creation of a conducting channel? Once opened, what is the nature of the pathway an ion sees in traversing the membrane? Does physiological inactivation of the Na+ channel depend on the existence of another specialized gate-like structure, or on the interaction of a blocking particle with the conducting channel? Is inactivation perhaps just a consequence of the relative stability of one of several intermediate, nonconducting protein conformations, so that the term “inactivation” becomes a misnomer to the extent that it is taken to imply the existence of a separate kinetic process? In an attempt to answer such questions investigators have drugged, irradiated, and digested axons, have grossly altered internal and external electrolyte compositions, and have subjected axons to increasingly more complex voltage-clamp protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almers, W., 1978, Gating currents and charge movements in excitable membranes, Rev. Physiol. Biochem. Pharmacol. 82:97–190.

    Google Scholar 

  • Armstrong, C. M., 1966, Time course of TEA+-induced anomalous rectification in squid giant axon, J. Gen. Physiol. 50:491–503.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C.M., 1969, Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons, J. Gen. Physiol., 54:553–574.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. M., 1971, Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons, J. Gen. Physiol. 58:413–437.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C.M., and Bezanilla, F., 1973, Currents related to the movements of the gating particles of the sodium channel, Nature 242:459–461.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C.M., and Bezanilla, F., 1974, Charge movement associated with the opening and closing of the activation gates on the sodium channel, J. Gen. Physiol. 63:533–552.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. M., and Bezanilla, F., 1977, Inactivation of the sodium channel. II. Gating current experiments, J. Gen. Physiol. 70:567–590.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. M., and Gilly, W. F., 1979, Fast and slow steps in the activation of sodium channels, J. Gen. Physiol. 74:691–711.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C.M., and Taylor, S. R., 1980, Interaction of barium ions with potassium channels in squid giant axons, Biophys. J. 30:473–488.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, G., 1981, Novel kinetics in the sodium conductance system predicted by the aggregation model of channel gating, Biophys. J. 35:699–705.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, G., and Mueller, P., 1964, A molecular model of membrane excitability, J. Supramol. Struct. 2:538–557.

    Article  Google Scholar 

  • Begenisich, T. B., and Cahalan, M. D., 1980, Sodium channel permeation in squid axons. I. Reversal potential experiments, J. Physiol. 307:217–242.

    PubMed  CAS  Google Scholar 

  • Bullock, J. O., and Schauf, C. L., 1978, Combined voltage-clamp and dialysis of Myxicola axons: Behavior of membrane asymmetry currents, J. Physiol. 278:309–324.

    PubMed  CAS  Google Scholar 

  • Cahalan, M. D., 1978, Local anesthetic block of sodium channels in normal and pronase-treated squid giant axons, Biophys. J. 23:285–311.

    Article  PubMed  CAS  Google Scholar 

  • Cahalan, M. D., and Almers, W., 1979a, Interactions between quaternary lidocaine, the sodium channel gates, and tetrodotoxin, Biophys. J. 27:39–56.

    Article  CAS  Google Scholar 

  • Cahalan, M. D., and Almers, W., 1979b, Block of sodium conductance and gating current in squid giant axons poisoned with quaternary strychnine, Biophys. J. 27:57–74.

    Article  CAS  Google Scholar 

  • Conti, F., and Palmieri, G., 1968, Nerve fiber behavior in heavy water under voltage clamp, Biphysik 5:71–79.

    Article  CAS  Google Scholar 

  • Covington, A. K., and Jones, S. J., 1968, Hydrogen Bonded Solvent Systems, Taylor and Francis Publishers, London.

    Google Scholar 

  • Eaton, D. C., and Brodwick, M. S., 1980, Effects of barium on the potassium conductance of squid axon, J. Gen. Physiol. 75:727–750.

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, G., 1962, Cation-sensitive glass electrodes and their mode of operation, Biophys. J. 2(Part 2):259–295.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, L., and Schauf, C. L., 1972, Inactivation of the sodium current in Myxicola giant axons: Evidence for coupling to activation, J. Gen. Physiol. 59:659–675.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, L., and Schauf, C. L., 1973, Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant axons, J. Gen. Physiol. 61:261–284.

    Article  Google Scholar 

  • Hahin, R., and Strichartz, G., 1981, Effects of deuterium oxide on the rate and dissociation constants for saxitoxin and tetrodotoxin action. Voltage clamp studies on frog myelinated nerve, J. Gen. Physiol. 78:113–140.

    Article  PubMed  CAS  Google Scholar 

  • Heppolette, R. L., and Robertson, R. E., 1960, The temperature dependence of the solvent isotope effect, J. Am. Chem. Soc. 83:1834–1838.

    Article  Google Scholar 

  • Hille, B., 1971, The permeability of the sodium channel to organic cations in myelinated nerve, J. Gen. Physiol. 58:599–620.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1972, The permeability of the sodium channel to metal cations in myelinated nerve, J. Gen. Physiol. 59:637–658.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1975, Ionic selectivity, saturation, and block in sodium channels; a four-barrier model, J. Gen. Physiol. 66:535–560.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117:500–544.

    CAS  Google Scholar 

  • Horn, R., Patlak, J., and Stevens, C. F., 1981, Sodium channels need not open before they inactivate, Nature 291:426–427.

    Article  PubMed  CAS  Google Scholar 

  • Katz, J. L., and Crespi, H. L., 1970, Isotope effects in biological systems, in: Isotope Effects in Chemical Reactions (C. J. Collins and N. S. Bowman, eds.), pp. 286–363, Van Nostrand-Reinhold, New York.

    Google Scholar 

  • Keynes, R. D., Malachowski, G. C., Van Helden, D. F., and Greeff, N. G., 1981, Components of the asymmetry current in the squid giant axon, in: Advances in Pysiological Sciences, Vol. 4 (J. Salanki, ed.), pp. 37–49, Pergamon Press, Budapest.

    Google Scholar 

  • Kirsch, G. E., Yeh, J. Z., Farley, J. M., and Narahashi, T., 1980, Interaction of n-alkylguanidine with the sodium channel of squid axon membrane, J. Gen. Physiol. 76:315–336.

    Article  PubMed  CAS  Google Scholar 

  • Kresheck, G. C., Schneider, H., and Scheraga, H. A., 1965, The effect of D2O on the thermal stability of proteins. Thermodynamics parameters for the transfer of model compounds from H2O to D2O, J. Phys. Chem. 69:3132–3144.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, C. V., and Friedman, H. L., 1969, Solvation enthalpies of various nonelectrolytes in water, propylene carbonate, and dimethyl sulfoxide, J. Phys. Chem. 73:1572–1580.

    Article  CAS  Google Scholar 

  • Laidler, K. J., 1969, Theories of Chemical Reaction Rates, McGraw Hill, New York.

    Google Scholar 

  • Melander, L., 1960, Isotope Effects on Reaction Rates, Ronald Press, New York.

    Google Scholar 

  • Meves, H., 1974, The effect of holding potential on the asymmetry currents in squid giant axons, J. Physiol. 243:847–867.

    PubMed  CAS  Google Scholar 

  • Moore, J. W., and Cox, G., 1976, A kinetic model for the sodium conductance system in squid axon, Biophys. J. 16:171–191.

    Article  PubMed  CAS  Google Scholar 

  • Morello, R., Begenisich, T., Trzos, W., and Reed, J, K., 1980, Interaction of nonylguanidine with the sodium-channel, Biophys. J. 31:435–440.

    Article  PubMed  CAS  Google Scholar 

  • Nemethy, G., and Scheraga, H. A., 1964, Structure of water and hydrophobic bonding in proteins IV. The thermodynamic properties of liquid deuterium oxide, J. Chem. Phys. 41:680–687.

    Article  CAS  Google Scholar 

  • Neumcke, B., Nonner, W., and Stämpfli, R., 1976, Asymmetrical displacement current and its relation with activation of the sodium current in the membrane of frog myelinated nerve, Pflügers Arch. 363:193–203.

    Article  PubMed  CAS  Google Scholar 

  • Schauf, C. L., and Bullock, J. O., 1979, Modification of sodium channel gating in Myxicola giant axons by deuterium oxide, temperature and internal cations, Biophys. J. 27:193–208.

    Article  PubMed  CAS  Google Scholar 

  • Schauf, C. L., and Bullock, J. O., 1980, Solvent substitution as a probe of channel gating in Myxicola: differential effects of D2O on some components of membrane conductance, Biophys J. 30:295–306.

    Article  PubMed  CAS  Google Scholar 

  • Schauf, C. L., and Bullock, J. O., 1981, Isotope effects on ionic currents and intramembrane charge movements in Myxicola axons: Implications for models of sodium channel gating, in: Advances in Physiological Sciences, Vol. 4 (J. Salanki, ed.), pp. 51–66, Pergamon Press, Budapest.

    Google Scholar 

  • Schauf, C. L., and Bullock, J. O., 1982, Solvent substitution as a probe of channel gating in Myxicola: Effects of D2O on kinetic properties of drugs that occlude channels, Biophys. J. 37:441–452.

    Article  PubMed  CAS  Google Scholar 

  • Schauf, C. L., and Davis, F. A., 1976, Sensitivity of the sodium and potassium channels of Myxicola giant axons to changes in external pH, J. Gen. Physiol. 67:185–195.

    Article  PubMed  CAS  Google Scholar 

  • Schauf, C. L., and Smith, K. J., 1982, Gallamine triethiodide-induced modifications of the sodium conductance in Myxicola giant axons, J. Physiol. 323:157–171.

    PubMed  CAS  Google Scholar 

  • Schauf, C. L., Bullock, J. O., and Pencek, T. L., 1977, Characteristics of sodium tail currents in Myxicola axons: Comparison with membrane asymmetry currents, Biophys. J. 19:7–28.

    Article  PubMed  CAS  Google Scholar 

  • Strichartz, G. R., 1973, The inhibition of sodium current in myelinated nerve by quaternary derivatives of lidocaine, J. Gen. Physiol. 62:37–57.

    Article  PubMed  CAS  Google Scholar 

  • Swain, C. G., and Evans, D. F., 1966, Conductances of ions in light and heavy water at 25 °C, J. Am. Chem. Soc. 88:383–390.

    Article  CAS  Google Scholar 

  • Thornton, E. L., and Thornton, E. R., 1970, Origin and intepretation of isotope effects, in: Isotope Effects in Chemical Reactions (C. J. Collins and N. S. Bowman, eds.), pp. 286–363, Van Nostrand-Reinhold, New York.

    Google Scholar 

  • Tronstad, L., and Stokland, K., 1937, Electrical conductivities and ion mobilities in heavy water, K. Nor. Vidensk. Selsk. Forh. 10:141–144.

    Google Scholar 

  • Ulbricht, W., 1979, Kinetics of tetrodotoxin and saxitoxin action at the node of Ranvier, Adv. Cytopharmacol. 3:363–372.

    PubMed  CAS  Google Scholar 

  • Yeh, J., and Armstrong, C. M., 1978, Immobilization of gating charge by a substance that stimulates inactivation, Nature 273:387–389.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, J. Z., and Narahashi, T., 1977, Kinetic analysis of pancuronium interaction with sodium channels in squid axon membranes, J. Gen. Physiol. 69:293–323.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Schauf, C.L. (1983). Solvent Substitution as a Probe of Gating Processes in Voltage-Dependent Ion Channels. In: Chang, D.C., Tasaki, I., Adelman, W.J., Leuchtag, H.R. (eds) Structure and Function in Excitable Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9337-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9337-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9339-3

  • Online ISBN: 978-1-4615-9337-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics