Skip to main content

History of the Physical Chemistry of Charged Membranes

  • Chapter
Structure and Function in Excitable Cells

Abstract

One has to look for the roots of what now has been called membranology far back in time and search into many different fields of human activity. My task in this chapter must necessarily be more limited as indicated by the title “Charged Membranes.”* Seen in retrospect, the primary problems and speculations were concerned with the riddle of many life processes. The search began with experiments on frog muscle contractions by Galvani about 1780 (Fig. 1). Incidentally, it can be said that the ensuing controversy between Galvani and Volta and others, about the actual nature of “animal electricity” also led to the development of electromagnetism, which gave rise to our first electrical measuring instruments (galvanometers and voltmeters). The debates on muscle electricity and muscle contractions enhanced old speculations on the mechanism of bodily excretions and secretions, such as urine, bile, and gastric juice. These are more “visible” problems, which inspired “model making” with pig bladder, parchment, and other “diaphragms.” Dialysis and osmosis were discovered, and this was the beginning of colloid chemistry. It is of particular interest to recall that the “electrified osmosis” called electroendosmosis was discovered already in 1803 by Reuss. Later, Dutrochet, Quincke, and particularly Wiedemann (1893) were able to set up the quantitative laws for electroosmosis which are valid even today, notwithstanding the advent of a new powerful tool, irreversible thermodynamics. The author’s own work on excitability models rests on “Wiedemann’s law” and on the important “hydrodiffusion” law of A. Fick (Figs. 2 and 3). Fick (1866) has an excellent chapter on diffusion in his book Medizinische Physik, probably the first text on this subject.

An important principle in any department of knowledge is to find the approach from which a problem appears in its greatest simplicity.

Quotation attributed to J. Willard Gibbs (1839–1903)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrhenius, S., 1892, Untersuchungen über Diffusion von in Wasser gelösten Stoffen, Zeitschr. Physik. Ch. 10:51–95.

    Google Scholar 

  • Bernstein, J., 1902, Untersuchungen zur Thermodynamik der bioelektrischen Ströme, I, Pfügers Archiv. 92:521–540.

    Article  CAS  Google Scholar 

  • Bernstein, J., 1912, Elektrobiologie, Fr. Vieweg & Sohn, Braunschweig.

    Google Scholar 

  • Beutner, R., 1920, Die Entstehung Elektrischer Ströme in Lebenden Geweben, Enke, Stuttgart.

    Google Scholar 

  • Beutner, R., 1933, Physical Chemistry of Living Tissues and Life Processes, Williams & Williams, Baltimore.

    Google Scholar 

  • Cole, K. S., 1968, Membranes, Ions and Impulses, University of California Press, Berkeley and Los Angeles.

    Google Scholar 

  • Dean, R.B., 1947, The effects produced by diffusion in aqueous systems. Chem Reviews, 41:503–521.

    Article  CAS  Google Scholar 

  • Fick, A., 1855, Über Diffusion, Peendorfs Ann. 10:337.

    Google Scholar 

  • Fick, A., 1866, Die Medizinische Physik, Verlag Fr. Veiweg & Sohn, Braunschweig.

    Google Scholar 

  • Franck, U., 1980, The Teorell membrane oscillator—a complete nerve model, Upsala J. Med. Sci. 85(No. 3):265–282.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, D., 1943, Potential, impedance and rectification in membranes, J. Gen. Physiol. 27:37–60.

    Article  PubMed  CAS  Google Scholar 

  • Helfferich, F., 1959, Ionenaustauscher, Bd. I, Verlag Chemie, Wiedheim (English Edition, 1962, Ion Exchange, McGraw-Hill, New York).

    Google Scholar 

  • Jain, M. K., 1972, The Bimolecular Lipid Membrane, van Nostrand Reinhold, New York, Toronto, London.

    Google Scholar 

  • Lakshminarayanaiah, N., 1969, Transport Phenomena in Membranes, Academic Press, New York and London.

    Google Scholar 

  • Ling, G. N., 1962, A Physical Theory of the Living State: The Association-Induction Hypothesis, Blaisdale, New York and London.

    Google Scholar 

  • Loeb, J., 1922, Proteins and the Theory of Colloidal Behavior, McGraw-Hill, New York.

    Book  Google Scholar 

  • Loeb, J., and Beutner, R., 1912, Über die Potentialdifferenzen an der unverletzten und verletzten Oberfläche pflanzlicher und tierischer Organe, Biochem. Zeitschr. 41:1–26 (also cited in Beutner, 1933, p. 196).

    Google Scholar 

  • Meares, P., 1980, Coupling of ion and water fluxes in synthetic membranes, Upsala J. Med. Sci. 85(No. 3):259–264.

    Article  PubMed  CAS  Google Scholar 

  • Meares, P., and Page, K. R., 1972, Rapid force-flux transitions in highly porous membranes, Phil. Trans. R. Soc. A (London) 272:1–46.

    Article  CAS  Google Scholar 

  • Meyer, K. H., and Sievers, J. F., 1936, several articles in Helv. Chim. Acta 19:649, 665, 987.

    Article  CAS  Google Scholar 

  • Michaelis, L., 1922, Die Wasserstoffionen-Konzentration, 2nd ed., Springer Verlag, Berlin.

    Google Scholar 

  • Monnier, A. M., 1980, The possible role of dielectric constant variation and of electro-osmosis in excitable natural and artificial membranes. An extension of Teorell’s “membrane oscillator,” Upsala J. Med. Sci. 85(No. 3):237–246.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, P., Rudin, D., Tien, H. T., and Wescott, W., 1962, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194:979–980.

    Article  PubMed  CAS  Google Scholar 

  • Osterhout, W. J. V., 1956, The role of water in protoplasmic permeability and in antagonism, J. Gen. Physiol. 39:963–976.

    Article  PubMed  CAS  Google Scholar 

  • Rothschuh, K. E., 1953, Geschichte der Physiologic Springer-Verlag, Berlin, Göttingen, Heidelberg (English version, 1973, History of Physiology, R. Krieger, Huntington, New York).

    Google Scholar 

  • Schlögl, R., 1964, Stofftransport durch Membranen, Steinkopff Verlag, Stuttgart.

    Google Scholar 

  • Sollner, K., 1976, The early development of the electrochemistry of polymer membranes, in: Charged Gels and Membranes, Part 1 (E. Sélégny, ed.), pp. 3 – 55, Reidel, Dordrecht-Holland.

    Chapter  Google Scholar 

  • Strickholm, A., 1981, Control of ionic permeability by membrane charged groups: Dependency of pH, depolarization, tetrodotoxin and procaine, Upsala J. Med. Sci. 86:9–21.

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, I., 1968, Nerve Excitation, A Macromolecular Approach, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Tasaki, I., and Iwasa, K., 1980, Swelling of nerve fibers during action potential, Upsala J. Med. Sci. 85(No. 3):211–215.

    Article  PubMed  CAS  Google Scholar 

  • Teorell, T., 1935a, Studies on the “diffusion effect” upon ionic distribution. I. Some theoretical considerations, Proc. Natl. Acad. Sci. USA 21:152–161.

    Article  CAS  Google Scholar 

  • Teorell, T., 1935b, An attempt to formulate a quantitative theory of membrane permeability, Proc. Soc. Exp. Biol. Med. 33:282–285.

    CAS  Google Scholar 

  • Teorell, T., 1936a, Ionic transference numbers in cellophane membranes, J. Gen. Physiol. 19:917–927.

    Article  PubMed  CAS  Google Scholar 

  • Teorell, T., 1936b, A method of studying conditions within diffusion layers, J. Biol. Chem. 113:735–748.

    CAS  Google Scholar 

  • Teorell, T., 1937a, Studies on the “diffusion effect” upon ionic distribution. II. Experiments on ionic accumulation, J. Gen. Physiol. 21:107–132.

    Article  CAS  Google Scholar 

  • Teorell, T., 1937b, The properties and functions of membranes. Natural and artificial, Trans. Faraday Soc. 33:939, 983, 1053, 1086.

    Article  Google Scholar 

  • Teorell, T., 1948, Membrane electrophoresis in relation to biological polarization effects, Nature 162:961.

    Article  CAS  Google Scholar 

  • Teorell, T., 1949a, Permeability, Annu. Rev. Physiol. 11:545 – 564.

    Article  PubMed  CAS  Google Scholar 

  • Teorell, T., 1949b, Membrane electrophoresis in relation to biological polarization effects, Arch. Sei. Physiol. 3:205–220.

    CAS  Google Scholar 

  • Teorell, T., 1951, Zur quantitativen Behandlung der Membranpermeabilität, Zeitschr. Elektrochemie, u. Angew. Physik. Ch. 55:460–469.

    CAS  Google Scholar 

  • Teorell, T., 1953, Transport processes and electrical phenomena in ionic membranes, Prog. Biophys. (and Biophys. Chem.) 3:305–369.

    CAS  Google Scholar 

  • Teorell, T., 1955, A contribution to the knowledge of rhythmical transport processes of water and salt, Exp. Cell Res. (Suppl.) 3:339–345.

    Google Scholar 

  • Teorell, T., 1956, Transport phenomena hunembranes, Eighth Spiers memorial lecture, Faraday Soc. Disc. 21:9–26.

    Article  Google Scholar 

  • Teorell, T., 1958, Transport processes in membranes in relation to the nerve mechanism, Exp. Cell Res. (Suppl.) 5:83–100.

    Google Scholar 

  • Teorell, T., 1959a, Electrokinetic membrane processes in relation to properties of excitable tissues. I. Experiments on oscillatory transport phenomenon in artificial membranes, J. Gen. Physiol. 42:831–845.

    Article  CAS  Google Scholar 

  • Teorell, T., 1959b, Electro-kinetic membrane processes in relation to the properties of excitable tissues. H. Some theoretical considerations, J. Gen. Physiol. 42:847–863.

    Article  CAS  Google Scholar 

  • Teorell, T., 1961, Oscillatory electrophoresis in ion exchange membranes, Arkiv. Kemi. (R. Acad. Sei. Stockholm) 22(18):401–408.

    Google Scholar 

  • Teorell, T., 1971, A biophysical analysis of mechano-electrical transduction, in: Handbook of Sensory Physiology, Vol. 1. Principles of Receptor Physiology (W. R. Loewenstein, ed.), pp. 292–339, Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Teorell, T., 1976, The development of the modern membrane concepts in relation to biological phenomena, in: Charged Gels and Membranes, Part I (E. Sélégny, ed.), pp. 57–69, Reidel, Dordrecht-Holland.

    Chapter  Google Scholar 

  • Teorell, T., 1980, A fixed charge system as a formal model for the behaviour of smooth muscles and the heart, Upsala J. Med. Sci. 85(No. 3):201–209.

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann, G., 1893, Die Lehre von der Elektrizität, 2nd Ed., Vol. 1, pp. 982–1023, Fr. Vieweg & Braunschweig.

    Google Scholar 

  • Wilbrandt, W., 1938, Review of current membrane research, Ergebn. Physiol. 40:204.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Teorell, T. (1983). History of the Physical Chemistry of Charged Membranes. In: Chang, D.C., Tasaki, I., Adelman, W.J., Leuchtag, H.R. (eds) Structure and Function in Excitable Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9337-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9337-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9339-3

  • Online ISBN: 978-1-4615-9337-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics