Skip to main content

Differentiation of Axonal Membrane Systems, the Axolemma, and the Axoplasmic Matrix

  • Chapter

Abstract

In this chapter we will discuss the interactions between axonal membrane systems and the “microtrabecular lattice” (MTL). In order to do this a brief review of some relatively new but fundamental observations on the membrane systems within myelinated axons is needed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew, W. S., Levinson, S. R., Brabson, J. S., and Raftery, M. A., 1978, Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes, Proc. Natl. Acad. Sci. USA 75:2606–2610.

    Article  PubMed  CAS  Google Scholar 

  • Ariyasu, R. G., Ellisman, M. H., Nichol, J. A., and Deerinck, T. D., 1982, Immunocytochemical localization of sodium-potassium adenosine triphosphatase in the rat central nervous system, Soc. Neurosci. Abst. 8:415.

    Google Scholar 

  • Baitinger, C., and Willard, M., 1981, Axonal transport of Na+K+ ATPase and protein I in retinal ganglion cells, Soc. Neurosci. Abst. 7:742.

    Google Scholar 

  • Bisby, M. A., 1977, Retrograde axonal transport of endogenous protein: Differences between motor and sensory axons, J. Neurochem. 28:303–314.

    Article  Google Scholar 

  • Broadwell, R. D., and Brightman, M. W., 1979, Cytochemistry of undamaged neurons transporting exogenous protein in vivo, J. Comp. Neurol. 185:31–74.

    Article  PubMed  CAS  Google Scholar 

  • Bunge, M. B., 1977, Initial endocytosis of peroxidase or ferritin by growth cones of cultured nerve cells, J. Neurocytol. 6:407–439.

    Article  PubMed  CAS  Google Scholar 

  • Darszon, A., Vandenberg, C. A., Schonfeld, M., Ellisman, M. H., Spitzer, N., and Montai, M., 1980, Reassembly of protein-lipid complexes into large bilayer vesicles: Perspectives for membrane reconstitution, Proc. Natl. Acad. Sci. USA 77:239–243.

    Article  PubMed  CAS  Google Scholar 

  • Deguchi, N., Jorgensen, P. L., and Maunsbach, A. B., 1977, Ultrastructure of the sodium pump, comparison of thin sectioning, negative staining, and freeze-fracture of purified, membrane-bound (Na+, K+)-ATPase, J. Cell Biol. 75:619–634.

    Article  PubMed  CAS  Google Scholar 

  • Droz, B., Rambourg, A., and Koenig, H. W., 1975, The smooth endoplasmic reticulum: Structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport, Brain Res. 93:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Duce, I. R., and Keen, P., 1978, Can neuronal smooth endoplasmic reticulum function as a calcium reservoir? Neuroscience 3:837–848.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M. H., 1976, The distribution of membrane molecular specializations characteristic of the node of Ranvier is not dependent upon myelination, Soc. Neurosci. Abst. 2:410.

    Google Scholar 

  • Ellisman, M. H., 1977, High voltage electron microscopy of cortical specializations associated with membranes at nodes of Ranvier, J. Cell Biol. 75:108a.

    Google Scholar 

  • Ellisman, M. H., 1979, Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination, J. Neurocytol. 8:719–735.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M. H., 1982, A hypothesis on the interaction between membrane systems within the axon and the microtrabecular cross-linkages of the axoplasmic matrix, in: Axoplasmic Transport (D. Weiss, ed.), Springer-Verlag, New York, pp. 55–63.

    Google Scholar 

  • Ellisman, M. H., and Levinson, S. R., 1982, Immunocytochemical localization of sodium channel (TTX binding protein) distribution in excitable membranes of Electrophorus electricus, Proc. Natl. Acad. Sci. USA, 79:6707–6711.

    Article  CAS  Google Scholar 

  • Ellisman, M. H., and Lindsey, J. D., 1981, The axonal reticulum within myelinated axons is not rapidly transported, J. Cell Biol. Abst. 91:91a.

    Google Scholar 

  • Ellisman, M. H., and Lindsey, J. D., 1983, The axoplasmic reticulum within myelinated axons is not transported rapidly. J. Neurocytol. 12:393–411.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M. H., and Porter, K. R., 1980, The microtrabecular structure of the axoplasmic matrix visualization of cross-linking structures and their distribution, J. Cell Biol. 87:464–479.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M. H., Agnew, W. S., Miller, J. A., and Levinson, S. R., 1982a, Electron microscopic visualization of the tetrodotoxin binding protein from Electrophorus electricus, Proc. Natl. Acad. Sci. USA, 79:4461–4465.

    Article  CAS  Google Scholar 

  • Ellisman, M. H., Levinson, S. R., Agnew, W. S., Miller, J., and Deerinck, T. J., 1982b, Visualization of the sodium channel and its immunocytochemical localization, Soc. Neurosci. Abst., 8:727.

    Google Scholar 

  • Grafstein, B., and Forman, D. S., 1980, Intracellular transport in neurons, Physiol. Rev. 60:1167–1283.

    PubMed  CAS  Google Scholar 

  • Hammerschlag, R., Stone, G. C., Lindsey, J. D., and Ellisman, M. H., 1982, Evidence that all newly synthesized proteins destined for fast axonal transport pass through the Golgi apparatus, J. Cell Biol. 93:568–575.

    Article  PubMed  CAS  Google Scholar 

  • Henkart, M. P., Reese, T. S., and Brinley, F. J., Jr., 1978, Endoplasmic reticulum sequesters calcium in the squid giant axon, Science 202:1300–1303.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, H., and Tsukita, S., 1982, Morphological and functional correlates of axoplasmic transport, Axoplasmic Transport (D. Weiss, ed.), Springer-Verlag, New York, pp. 251–259.

    Google Scholar 

  • Kristol, C., Akert, K., Sandri, C., Wyss, U. R., Bennett, M. V. L., and Moor, H., 1977, The Ranvier nodes in the neurogenic electric organ of the knife fish Sternarchus: A freeze-etching study on the distribution of the membrane-associated particles, Brain Res. 125:17–212.

    Article  Google Scholar 

  • Kristol, C., Sandri, C., and Akert, K., 1978, Intramembranous particles at the noes of Ranvier of the cat spinal cord: A morphometric study, Brain Res. 142:391–400.

    Article  PubMed  CAS  Google Scholar 

  • LaVail, J. H., Rapisardi, S., and Sugino, I. K., 1980, Evidence against the smooth endoplasmic reticulum as a continuous channel for the retrograde axonal transport of horseradish peroxidase, Brain Res. 191:3–20.

    Article  PubMed  CAS  Google Scholar 

  • Levinson, S. R., and Ellory, J. C., 1973, Molecular size of the tetrodotoxin-binding sites estimated by irradiation inactivation, Nature New Biol. 245:122–123.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. A., Agnew, W. S., and Levinson, S. R., 1982, The tetrodotoxin binding protein from the electroplax of E. electricus: Isolation of milligram quantities of the principle polypeptide and its physicochemical characterization, J. Biol. Chem., in press.

    Google Scholar 

  • Nonner, W., Rojas, E., and Stampili, R., 1975, Gating currents in the node of Ranvier: Voltage and time dependence, Phil. Trans. R. Soc. (London) B 270:483–492.

    Article  CAS  Google Scholar 

  • Peters, A., 1966, The node of Ranvier in the central nervous system, Quart. J. Exp. Physiol. 51:229–239.

    PubMed  CAS  Google Scholar 

  • Reiter, W., 1966, Uber das Raumsystem des endoplasmischen Retikulums von Hautnervenfasern. Untersuchungen an Serienschnitten, Z. Zellforsch. Mikrosk. Anat. 72:446–461.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, J. M., and Chui, S. Y., 1981, Distribution of sodium and potassium channels in mammalian myelinated nerve, in: Demyelinating Disease: Basic and Clinical Electrophysiology (S. G. Waxman and J. M. Ritchie, eds.), pp. 329–342, Raven Press, New York.

    Google Scholar 

  • Ritchie, J. M., and Rogart, R. B., 1977, Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath, Proc. Natl. Acad. Sci. USA 74:211–215.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbluth, J., 1976, Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain, J. Neurocytol. 5:731–745.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, D., Grosse, R., Ellisman, M. H., Bradshaw, V. B., and Leffert, H., 1982, Na+, K+-ATPase: A new assay of Na+-ATPase reveals covert antipump antibodies, Anal. Biochem., 125:189–196.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, J. H., 1979, Axonal transport: Components, mechanisms, and specificity, Annu. Rev. Neurosci. 2:467–504.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. S., 1980, The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons, J. Neurocytol. 9:39–65.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., and Ishikawa, H., 1976, Three-dimensional distribution of smooth endoplasmic reticulum in myelinated axons, J. Elec. Microscopy 25:141–149.

    CAS  Google Scholar 

  • Tsukita, S., and Ishikawa, H., 1980, Movement of membranous organelles in axons. Electronic-microscopic identification of anterogradely and retrogradely transported organelles, J. Cell Biol. 84:513–530.

    Article  PubMed  CAS  Google Scholar 

  • Weldon, P. R., 1975, Pinocytotic uptake and intracellular distribution of colloidal thorium dioxide by cultured sensory neurites, J. Neurocytol. 4:341–356.

    Article  PubMed  CAS  Google Scholar 

  • Wiley, C.A., and Ellisman, M. H., 1980, Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the glial-axonal junction at the node of Ranvier, J. Cell Biol. 84:261–280.

    Article  PubMed  CAS  Google Scholar 

  • Wiley-Livingston, C. A., and Ellisman, M. H., 1980, Development of axonal membrane specializations defines nodes of Ranvier and precedes Schwann cell myelin formation, Dev. Biol. 79:334–355.

    Article  PubMed  CAS  Google Scholar 

  • Wiley-Livingston, C. A., and Ellisman, M. H., 1981, Myelination dependent axonal membrane specializations demonstrated in insufficiently myelinated nerves of the dystrophic mouse, Brain Res. 224:55–67.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. G., Jean, D. H., Whitaker, J. N., McLaughlin, B. J., and Albers, R. W., 1977, Immunocytochemical localization of the sodium, potassium activated ATPase in knifefish brain, J. Neurocytol. 5:571–581.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Ellisman, M.H., Lindsey, J.D., Wiley-Livingston, C., Levinson, S.R. (1983). Differentiation of Axonal Membrane Systems, the Axolemma, and the Axoplasmic Matrix. In: Chang, D.C., Tasaki, I., Adelman, W.J., Leuchtag, H.R. (eds) Structure and Function in Excitable Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9337-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9337-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9339-3

  • Online ISBN: 978-1-4615-9337-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics