Skip to main content

Part of the book series: Advances in Experimental Medicine and Bioligy ((AEMB,volume 148))

Abstract

In biological systems, persulfides (RSS-) are reactive, unstable intermediates in the transformations of sulfur compounds. Persulfides are also referred to as polysulfides, or alkyl/aryl hydrogen disulfides. The persulfide sulfur is commonly termed, “sulfane”, to designate sulfur covalently bonded only to other sulfur atoms. The scission of the sulfur-sulfur bond is enhanced by the joint action of electrophilic and nucleophilic groups1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Kice, Electrophilic and nucleophilic catalysis of the scission of the sulfur-sulfur bond, Acc. Chem. Res. 1: 58 (1968).

    Article  CAS  Google Scholar 

  2. J. W. Hylin and J, L. Wood, Enzymic formation of polysulfides from mercaptopyruvate, J. Biol. Chem. 234: 2141 (1959).

    PubMed  CAS  Google Scholar 

  3. M. Flavin, Microbial transsulfuration; the mechanism of an enzymatic disulfide elimination reaction, J. Biol. Chem. 237: 768 (1962).

    PubMed  CAS  Google Scholar 

  4. D. Cavallini, C. De Marco, B. Mondovi, and B. G. Mori, The cleavage of cystine by cystathionase and the transulfuration of hypotaurine, Enzymologia 22: 161 (1960).

    PubMed  CAS  Google Scholar 

  5. D. Cavallini, C. De Marco, and B. Mondovi, The enzymic conversion of cystamine and thiocysteamine into thiotaurine and hypotaurine, Enzymologia 23: 101 (1961).

    PubMed  CAS  Google Scholar 

  6. B. Sörbo, A calorimetric method for the determination of thiosulfate, Biochim. Biophys. Acta 23: 412 (1957).

    Article  Google Scholar 

  7. B. H. Sörbo, On the substrate specificity of rhodanese, Acta Chem. Scand. 7: 32 (1953).

    Article  Google Scholar 

  8. J. Westley and D. Heyse, Mechanism of sulfur transfer catalysis, sulfhydryl-catalyzed transfer of thiosulfonate sulfur, J. Biol. Chem.246: 1468 (1971).

    PubMed  CAS  Google Scholar 

  9. B. Sörbo, On the catalytic effect of blood serum on the reaction between colloidal sulfur and cyanide, Acta Chem. Scand. 9: 1656 (1955).

    Article  Google Scholar 

  10. J. F. Schneider and J. Westley, Metabolic interrelations of sulfur in proteins, thiosulfate, and cystine, J. Biol. Chem. 244: 5735 (1969).

    PubMed  CAS  Google Scholar 

  11. D. S. Tarbell and D. P. Harnish, Cleavage of the carbonsulfur bond in divalent sulfur compounds, Chem. Rev. 49: 1 (1951).

    Article  CAS  Google Scholar 

  12. N. Catsimpoolas and J. L. Wood, The reaction of cyanide with bovine serum albumin, J. Biol. Chem. 239: 4132 (1964).

    CAS  Google Scholar 

  13. J. M. Swan, Synthese and Lanthionin-Bildung von einigen Cystin-Derivate, Angew. Chem. 68: 215 (1956).

    Google Scholar 

  14. D. Cavallini, G. Federici, E. Barboni, and M, Marcucci, Formation of persulfide groups in alkaline treated insulin, FEBS Lett. 10: 125 (1970).

    Article  PubMed  CAS  Google Scholar 

  15. D. Cavallini, G. Federici, and E. Barboni, Interaction of proteins with sulfide, Eur. J. Biochem. 14: 169 (1970).

    Article  PubMed  CAS  Google Scholar 

  16. B. Sörbo, On the mechanism of rhodanese inhibition by sulfite and cyanide, Acta Chem. Scand. 16: 2455 (1962).

    Article  Google Scholar 

  17. A. Finazzi Agrö, G. Federici, C. Giovagnoli, C. Cannella, and D. Cavallini, Effect of sulfur binding on rhodanese fluorescence, Eur. J. Biochem. 28: 89 (1972).

    Article  Google Scholar 

  18. M. Volini and S.-F. Wang, The interdependence of substrate and protein transformations in rhodanese catalysis. III. Enzyme changes outside the catalytic cycle, J. Biol. Chem. 248: 7329 (1973).

    Google Scholar 

  19. J. H. Ploegman, G. Drent, K. H. Kalk and W. G. J. Hol, The structure of bovine liver rhodanese. II. The active site in sulfur-substituted and the sulfur-free enzyme, Mol. Biol. 127: 149 (1979).

    Article  CAS  Google Scholar 

  20. J. W. Hylin, H. Fiedler, and J. L. Wood, Thiocyanate formation by extracts of Escherichia coli and of liver, Proc. Soc. Exp. Biol. Med. 100: 165 (1959).

    PubMed  CAS  Google Scholar 

  21. A. Meister, P. E. Fraser and S. V. Tice, Enzymatic desulfuration of β-mercaptopyruvate to pyruvate, J. Biol. Chem. 206: 561 (1954).

    PubMed  CAS  Google Scholar 

  22. H. Vachek and J. L. Wood, Purification and properties of mercaptopyruvate sulfurtransferase of Escherichia coli, Biochim. Biophys. Acta 258: 133 (1972).

    PubMed  CAS  Google Scholar 

  23. R. Jarabak and J. Westley, 3-Mercaptopyruvate sulfur transferase: rapid equilibrium-ordered mechanism with cyanide as the acceptor substrate, Biochemistry 19: 900 (1980).

    Article  PubMed  CAS  Google Scholar 

  24. T. W. Szczepkowski and J. L. Wood, The cystathionase-rhodanese system, Biochim. Biophys. Acta 139: 469 (1967).

    PubMed  CAS  Google Scholar 

  25. J. C. Fletcher and A. Robson, The occurrence of bis-(2-amino-2-carboxyethyl)trisulphide in hydrolysates of wool and other proteins, Biochem. J. 87: 553 (1963).

    PubMed  CAS  Google Scholar 

  26. J. D. Sandy, R. C. Davies, and A. Neuberger, Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides: a role for trisulphides, Biochem. J., 150: 245 (1975).

    PubMed  CAS  Google Scholar 

  27. V. Massey, C. H. Williams, Jr., and G. Palmer, The presence of S°-containing impurities in commercial samples of oxidized glutathione and their catalytic effect on the reduction of cytochrome c, Biochem. Biophys. Res. Commun. 42: 730 (1971).

    Article  PubMed  CAS  Google Scholar 

  28. R. Abdolrasulnia and J. L. Wood, Transfer of persulfide sulfur from thiocystine to rhodanese, Biochim. Biophys. Acta 567: 135 (1979). ’

    PubMed  CAS  Google Scholar 

  29. R. Abdolrasulnia and J. L. Wood, Persulfide properties of thiocystine and related trisulfides, Bioorg. Chem., 9: 253 (1980).

    Article  CAS  Google Scholar 

  30. K. Lang, Die Rhodanbildung im Tierkorper, Biochem. Z., 259: 243 (1933).

    CAS  Google Scholar 

  31. B. Sörbo, Thiosulfate sulfurtransferase and mercaptopyruvate sulfurtransferase, in: “Metabolic Pathways,” D. M. Greenberg, ed., Academic Press, New York (1969).

    Google Scholar 

  32. E. E. Conn, Cyanogenic glycosides, in: “Toxicants Occurring Naturally in Foods,” National Research Council, Committee on Food Protection, 2nd ed., National Academy of Sciences, Washington, D.C. (1973).

    Google Scholar 

  33. J. Chung and J. L. Wood, Oxidation of thiocyanate to cyanide catalyzed by hemoglobin, J. Biol. Chem. 205: 231 (1971).

    Google Scholar 

  34. H. Schievelbein, R. Baumeister, and R. Vogel, Comparative investigations on the activity of thiosulfate-sulfur transferase, Naturwissenschaften 56: 416 (1969).

    Article  PubMed  CAS  Google Scholar 

  35. B. Sörbo, Sulfite and complex-bound cyanide as sulfur acceptors for rhodanese, Acta Chem. Scand. 11: 628 (1957).

    Article  Google Scholar 

  36. M. Auriga and A. Koj, Protective effect of rhodanese on the respiration of isolated mitochondria intoxicated with cyanide, Bull. Acad. Pol. Sci. 23: 305 (1975).

    CAS  Google Scholar 

  37. T. W. Szczepkowski, The role of rhodanese in metabolic formation of thiosulphate, Acta Biochim. Pol., 8: 251 (1961).

    PubMed  CAS  Google Scholar 

  38. J. L. Wood, Nutritional and protective properties of thiocystine, Proc. Soc. Exp. Biol. Med. 165: 469 (1980).

    PubMed  CAS  Google Scholar 

  39. A. Koj, J. Frendo, and L. Wojczak, Subcellular distribution and intramolecular localization of three sulfurtransferases in rat liver, FEBS Lett., 57: 42 (1975).

    Article  PubMed  CAS  Google Scholar 

  40. C.-J. Clemedson, T. Fredriksson, B. Hansen, H. Hultman, and B. Sorbo, On the toxicity of sodium β -mercaptopyruvate and its antidotal effect against cyanide, Acta Physiol. Scand. 42: 41 (1958).

    Article  PubMed  CAS  Google Scholar 

  41. A. Koj and J. Frendo, The activity of cysteine desulfhydrase and rhodanese in animal tissues, Acta Biochim. Pol. 9: 373 (1962).

    PubMed  CAS  Google Scholar 

  42. M. Villarejo and J. Westley, Mechanism of rhodanese catalysis of thiosulfate-lipoate oxidation-reduction, J. Biol. Chem. 238: 4016 (1963).

    PubMed  CAS  Google Scholar 

  43. A. Koj and J. Frendo, Oxidation of thiosulfate to sulfate in animal tissues, Folia Biol. Warsaw 15: 49 (1967).

    CAS  Google Scholar 

  44. A. Fasth and B. Sorbo, Protective effect of thiosulfate and metabolic thiosulfate precursors against toxicity of nitrogen mustard (HN2), Biochem. Pharmacol. 22: 1337 (1973).

    Article  PubMed  CAS  Google Scholar 

  45. V. Massey and D. Edmondson, On the mechanism of inactivation of xanthine oxidase by cyanide, J. Biol. Chem. 245: 6595 (1970).

    PubMed  CAS  Google Scholar 

  46. U. Branzoli and V. Massey, Evidence for an active site persulfide residue in rabbit liver aldehyde oxidase, J. Biol. Chem. 249: 4346 (1974).

    PubMed  CAS  Google Scholar 

  47. D. Petering, J. A. Fee, and G. Palmer, The oxygen sensitivity of spinach ferredoxin and other iron-sulfur proteins, J. Biol. Chenu 246: 643 (1971).

    CAS  Google Scholar 

  48. A. Finazzi Agrò, I. Mavelli, C. Cannella, and G. Federici, Activation of porcine heart mitochondrial malate dehydrogenase by zero valence sulfur rhodanese, Biochem. Biophys. Res. Commun. 68: 553 (1976).

    Article  PubMed  Google Scholar 

  49. S. Pagani, C. Cannella, P. Cerletti, and L. Pecci, Restoration of reconstitutive capacity of succinate dehydrogenase by rhodanese, FEBS Lett. 51: 112 (1975).

    Article  PubMed  CAS  Google Scholar 

  50. V. Tomati, G. Giovannozzi-Sermanni, S. Dupré, and C. Cannella, NADH: nitrate reductase activity restoration by rhodanese, Phytochemistry 15: 597 (1976).

    Article  CAS  Google Scholar 

  51. D. Cavallini, R. Scandurra, and C. De Marco, The role of sulfur, sulphide, and reducible dyes in the enzymic oxidation of cysteamine to hypotaurine, Biochem. J. 96: 781 (1965).

    PubMed  CAS  Google Scholar 

  52. J. L. Wood and D. Cavallini, Enzymic oxidation of cysteamine to hypotaurine in the absence of a cofactor, Arch. Biochem. Biophys. 119: 368 (1967).

    Article  PubMed  CAS  Google Scholar 

  53. A. Finazzi Agrò, C. Cannella, M. T. Graziani, and D. Cavallini, A possible role for rhodanese: the formation of “labile” sulfur from thiosulfate, FEBS Lett. 16: 172 (1971).

    Article  PubMed  Google Scholar 

  54. T. Taniguchi and T. Kimura, Role of 3-mercaptopyruvate sulfur-transferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin, Biochim. Biophys. Acta 304: 284 (1974).

    Google Scholar 

  55. F. Bonomi, S. Pagani, P. Cerletti, and C. Cannella, Rhodanese-mediated sulfur transfer to succinate dehydrogenase, Eur. J. Biochem. 72: 17 (1977).

    Article  PubMed  CAS  Google Scholar 

  56. J.-W. Wong, M. A. Harris, and C. A. Jankowicz, Transfer ribonucleic acid sulfur-transferase isolated from rat cerebral hemispheres, Biochemistry 13: 2805 (1974).

    Article  PubMed  CAS  Google Scholar 

  57. L. M. Siegel, Biochemistry of the sulfur cycle, in: “Metabolic Pathways,” D.M. Greenberg, ed., Academic Press, New York (1969).

    Google Scholar 

  58. I. Suzuki, Oxidation of elemental sulfur by an enzyme system of Thiobaeillus thiooxidans, Biochim. Biophys. Acta 104: 359 (1965).

    Article  PubMed  CAS  Google Scholar 

  59. M. Silver and D. P. Kelly, Rhodanese from Thiobaeillus A2: catalysis of reactions of thiosulphate with dihydrolipoate and dihydrolipoamide, J. Gen. Microbiol. 97: 277 (1976).

    PubMed  CAS  Google Scholar 

  60. D. J. W. Moriarty and D. J. D. Nicholas, Products of sulfide oxidation in extracts of Thiobaeillus eonevetivorus, Biochim. Biophys. Acta 197: 143 (1970).

    Article  PubMed  CAS  Google Scholar 

  61. E. A. Wider de Xifra, J. D. Sandy, R. C. Davies, and A. Neuberger, Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides, Philos. Trans. R. Soc. Lond. Ser. B. 273: 79 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Wood, J.L. (1982). Biochemical Functions of Persulfides. In: Bossa, F., Chiancone, E., Finazzi-Agrò, A., Strom, R. (eds) Structure and Function Relationships in Biochemical Systems. Advances in Experimental Medicine and Bioligy, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9281-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9281-5_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9283-9

  • Online ISBN: 978-1-4615-9281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics