Skip to main content

Role of Flavin and Iron Sulfur Centers in the Transition of Succinate Dehydrogenase from the Activated to the Non-Activated Form

  • Chapter
Structure and Function Relationships in Biochemical Systems

Part of the book series: Advances in Experimental Medicine and Bioligy ((AEMB,volume 148))

Abstract

The present report deals mainly with the aspects of succinate dehydrogenase which were developed by recent studies in our laboratory, i.e. the properties of the redox active centers of the enzyme in relation to the molecular mechanism of activation and the catalytic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.A. Davis and Y. Hatefi, Succinate Dehydrogenase I Purification, Molecular Properties and Substructure, Biochemistry 10:2509 (1971).

    Article  PubMed  CAS  Google Scholar 

  2. P.G. Righetti and P. Cerletti, Molecular Parameters of the Beef Heart Succinate Dehydrogenase, FEBS Lett. 13:181 (1971).

    Article  PubMed  CAS  Google Scholar 

  3. W.H. Walker, T.P. Singer, S. Ghisla and P. Hemmerich, Studies on Succinate Dehydrogenase: 8 α-Hystidyl-FAD as the Active Center of Succinate Dehydrogenase, Eur. J. Biochem. 26:279 (1972).

    Article  PubMed  CAS  Google Scholar 

  4. T. Ohnishi, Mitochondrial Iron-Sulfur Flavodehydrogenase, in “Membrane Proteins in Energy Transduction”, R.A. Capaldi, ed., Dekker Inc., New York, p. 1–80 (1979).

    Google Scholar 

  5. M. Gutman, E.B. Kearney and T.P. Singer, Control of Succinate Dehydrogenase in Mitochondria, Biochemistry 10:4763 (1971).

    Article  PubMed  CAS  Google Scholar 

  6. T.P. Singer, M. Gutman and E.B. Kearney, On the Need for Regulation of Succinate Dehydrogenase, FEBS Lett. 17:11 (1971).

    Article  PubMed  CAS  Google Scholar 

  7. B.A.C. Ackrell, E.B. Kearney and M. Mayer, Role of Oxaloacetate in the Regulation of Mammalian Succinate Dehydrogenase, J. Biol. Chero. 249:2021 (1974).

    CAS  Google Scholar 

  8. M. Gutman, The Effect of Opposing Effectors on Activation Level of Succinate Dehydrogenase: Equilibrium and Kinetic Studies, Biochemistry 15:1342 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. M. Gutman, Regulation of Mitochondrial Succinate Dehydrogenase by Substrate Type Activators, Biochemistry 16:3067 (1977).

    Article  PubMed  CAS  Google Scholar 

  10. L. Wojtczak, A.B. Wojtczak and L. Ernster, The Inhibition of Succinate Dehydrogenase by Oxaloacetate, Biochim. Biophys. Acta 191:10 (1969).

    PubMed  CAS  Google Scholar 

  11. E.B. Kearney, Studies on Succinic Dehydrogenase: IV. Activation of the Beef Heart Enzyme, J. Biol. Chem. 229:363 (1957).

    PubMed  CAS  Google Scholar 

  12. M. Gutman, E.B. Kearney and T.P. Singer, Regulation of Succinate Dehydrogenase Activity by Reduced Coenzyme Q10, Biochemistry 10:2726 (1971).

    Article  PubMed  CAS  Google Scholar 

  13. C. Gregolin and P. Scalella, Activation of the Oxidation of Succinate by Adenosine Triphosphate in Respiratory Particles of Yeast, Biochim. Biophys. Acta 99:185 (1965).

    PubMed  CAS  Google Scholar 

  14. P. Cerletti and A. Manzocchi, Regulation of Succinate Dehydrogenase, Acta Vitam. Enzymol. 1–4:5 (1973).

    Google Scholar 

  15. M. Gutman and N. Silman, The Steady State Activity of Succinate Dehydrogenase in the Presence of Opposing Effectors. Reductive Activation of Succinate Dehydrogenase in Presence of Oxaloacetate, Mol. Cell. Biochem. 7:177 (1975).

    Article  PubMed  CAS  Google Scholar 

  16. B.A.C. Ackrell, E.B. Kearney and D.E. Edmondson, Mechanism of Reductive Activation of Succinate Dehydrogenase, J. Biol.Chem. 250:7114 (1975).

    PubMed  CAS  Google Scholar 

  17. E.B. Kearney, T.P. Singer and N. Zastrow, On the Requirement of Succinic Dehydrogenase for Inorganic Phosphate, Arch. Biochem. Biophys. 55:580 (1955).

    Article  Google Scholar 

  18. M. Gutman, Modulation of Mitochondrial Succinate Dehydrogenase Activity;. Mechanism and Function, Mol.Cell.Biochem.20:41 (1978)

    Article  PubMed  CAS  Google Scholar 

  19. P. Kierkegaard, P. Norrestam, P.E. Werner, I. Csoregh, M. VonGlehn, R. Karlsson, M. Leijonmark, O. Rönquist, B. Stensland, O. Tillberg and L. Torbjornsson, X-Ray Structure Investigation of Flavin Derivatives, in; “Flavins and Flavoproteins”, H. Kamin, ed., pp. 1–22, University Park Press, Baltimore (1971).

    Google Scholar 

  20. M. Von-Glehn, B. Stensland and P. Kierkegaard, Crystal and Molecular Structures of Two Models for Flavoprotein Inhibitor Complexes and a 5-Thiaflavin in the Radical State, in: “Flavins and Flavoproteins”, K. Yagi, Y. Yamano, eds., pp. 37–44, Japan Scientific Societies Press, Tokyo (1979).

    Google Scholar 

  21. W.M. Clark, in: “Oxidation-Reduction Potential of Organic Systems” Williams and Wilkins, Baltimore (1960).

    Google Scholar 

  22. B.A.C. Ackrell, E.B. Kearney and D. Edmondson, Role of Flavin in Reductive Activation of Succinate Dehydrogenase, in: “Flavins and Flavoproteins”, T.P. Singer, ed., p. 522, Elsevier, Amsterdam (1976).

    Google Scholar 

  23. D.V. Devartanian and C. Veeger, Studies on Succinate Dehydrogenase 1. Spectral Properties of the Purified Enzyme and Formation of Enzyme-Competitive Inhibitor Complexes, Biochim. Biophys. Acta 92:233 (1964).

    Google Scholar 

  24. M. Gutman, F. Bonomi, S. Pagani and P. Cerletti, The Circular Dichroism and Optical Absorbancy of the Histidyl Flavin During Active-Non Active Transition of Soluble Succinate Dehydrogenase, FEBS Lett. 104:371 (1979).

    Article  PubMed  CAS  Google Scholar 

  25. F. Bonomi, S. Pagani and P. Cerletti, Enzymic Restoring of the Iron-Sulfur Structure of Succinate Dehydrogenase, in: “Flavins and Flavoproteins”, K. Yagi and T. Yamano, eds., Japan Scientific Societies Press, Tokyo and University Park Press, Baltimore pp. 227 (1979).

    Google Scholar 

  26. V. Massey and G. Palmer, On the Existence of Spectrally Distinct Classes of Flavoprotein Semiquinones. A New Method for the Quantitative Production of Flavoprotein Semiquinones, Biochemistry 5:3181 (1966).

    Article  PubMed  CAS  Google Scholar 

  27. G. Palmer, F. Muller and V. Massey, Electron Paramagnetic Resonance Studies on Flavoprotein Radicals, in: “Flavins and Flavoproteins”, H. Kamin, ed., University Park Press, Baltimore p. 123 (1971).

    Google Scholar 

  28. T. Ohnishi, T.E. King, J.C. Salerno, H. Blum, J.R. Bowjer and T. Maida, Thermodynamic and Electron Paramagnetic Resonance Characterization of Flavin in Succinate Dehydrogenase, J.Biol. Chem. 256:5578 (1981).

    Google Scholar 

  29. F. Bonomi, S. Pagani and P. Cerletti, Regulation of Succinate Dehydrogenase Activity by Monovalent Inorganic Anions: Kinetic and Molecular Studies, in: “Flavins and Flavoproteins”, V. Massey and C.H. Williams, jr., Eds., Elsevier North Holland N.Y., in press.

    Google Scholar 

  30. F. Bonomi, S. Pagani and P. Cerletti, Studi Spettroscopici sulla Dipendenza dal pH degli Stati Redox della Flavina Covalentemente legata nella Succinato Deidrogenasi, in Presenza di Vari Effettori, Atti del XXVII Congresso Nazionale SIB, Parma (1981).

    Google Scholar 

  31. V. Massey, R.G. Matthews, G.P. Foust, L.G. Howell, C.H. Williams, G. Zanetti and S. Ronchi, A New Intermediate in TPNH-linked Flavoproteins, in: “Pyridine Nucleotide-Dependent Dehydrogenase”, H. Sund, ed., p. 393, Springer Verlag, Berlin (1969).

    Google Scholar 

  32. G. Palmer, H. Britzinger and R.W. Estabrook, Spectroscopic Studies on Spinach Ferredoxin and Adrenodoxin, Biochemistry 6:1658 (1967).

    Article  PubMed  CAS  Google Scholar 

  33. T. Ohnishi, J.C. Salerno, D.B. Winter, J. Lim, C.A. Yu, L. Yu and T.E. King, Thermodynamic and EPR Characteristics of two Ferredoxin-Type Iron-Sulfur Centers in the Succinate-Ubiquinone Reductase Segment of the Respiratory Chain, J. Biol. Chem. 251:2094 (1976).

    PubMed  CAS  Google Scholar 

  34. G. Tollin, Magnetic Circular Dichroism and Circular Dichroism of Riboflavin and its Analogs, Biochemistry 7:1720 (1968).

    Article  PubMed  CAS  Google Scholar 

  35. M. Gutman, F. Bonomi, S. Pagani, P. Cerletti and P. Kroneck, Modulation of the Flavin Redox Potential as Mode of Regulation of Succinate Dehydrogenase, Biochim. Biophys. Acta 591:400 (1980).

    Article  PubMed  CAS  Google Scholar 

  36. H. Beinert, A.C. Ackrell, E.B. Kearney and T.P. Singer, Iron-Sulfur Components of Succinate Dehydrogenase Stochiometry and Kinetic behaviour in Activated Preparations, Eur. J. Biochem. 54:185 (1975).

    Article  PubMed  CAS  Google Scholar 

  37. M. Gutman and N. Silman, Reductive Activation of Succinate De hydrogenase: Equilibrium and Kinetics Studies, in: “Flavins and Flavoproteins”, T.P. Singer, ed., p. 537, Elsevier, Amsterdam (1976).

    Google Scholar 

  38. P. Hemmerich, in: “Transport by Protein”, G. Bauer and H. Saund, eds., p.123, Walter de Gruyter, Berlin (1978).

    Google Scholar 

  39. V. Massey and P. Hemmerich, Active-Site Probes of Flavoproteins, Bioch. Soc. Trans. 8:246 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Bonomi, F., Pagani, S., Cerletti, P. (1982). Role of Flavin and Iron Sulfur Centers in the Transition of Succinate Dehydrogenase from the Activated to the Non-Activated Form. In: Bossa, F., Chiancone, E., Finazzi-Agrò, A., Strom, R. (eds) Structure and Function Relationships in Biochemical Systems. Advances in Experimental Medicine and Bioligy, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9281-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9281-5_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9283-9

  • Online ISBN: 978-1-4615-9281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics