Skip to main content

Part of the book series: Advances in Experimental Medicine and Bioligy ((AEMB,volume 148))

  • 125 Accesses

Abstract

In mammalian mitochondria, as well as in bacteria, respiration is coupled to H+ ion extrusion due to operation of the redox-driven H+ pumps. This leads1,2 to formation of a H+ electrochemical gradient, Δμ̃H. Two rates of respiration are distinguished, that of fully uncoupled mitochondria and that of coupled mitochondria in the stationary state, denoted as state 4 or static head. In uncoupled mitochondria the respiratory rate Je is limited purely by the kinetics of e- transfer in the respiratory chain. On the other hand in coupled mitochondria the respiratory rate in static head, J she , is limited partly by the kinetics of e- transfer and partly by the thermodynamics of the H+ pump (energetic control). The nature of the energetic control requires some clarification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Mitchell, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. 41: 445 (1966).

    Article  PubMed  CAS  Google Scholar 

  2. P. Mitchell, A commentary on alternative hypotheses of protonic coupling in the membrane systems catalyzing oxidative and photosynthetic phosphorylation, FEBS Letters 78: 1 (1977).

    Article  PubMed  CAS  Google Scholar 

  3. D. Walz, Thermodynamics of oxidation-reduction reactions and its application to bioenergetics, Biochim. Biophys. Acta 505: 279 (1979).

    PubMed  CAS  Google Scholar 

  4. H. D. Westerhoff and K. Van Dam, Irreversible thermodynamic description of energy transduction in biomembranes, in: “Current Topics in Bioenergetics”, D.R. Sanadi ed., vol. 9, Acad. Press, New York, S. Francisco, London (1979).

    Google Scholar 

  5. D. G. Nicholls, The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution, Europ. J. Biochem. 50: 305 (1974).

    Article  PubMed  CAS  Google Scholar 

  6. C. Sorgato, S. J. Ferguson, Variable proton conductance of submitochondrial particles, Biochemistry 18:5737 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. D. B. Kell, P. John, and S. J. Ferguson, On the current-voltage relationship of energy-transducing membranes: phosphorylating membrane vesicles from Paracoccus dinitrificans, Biochem. Soc. Trans. 6: 1292 (1978).

    PubMed  CAS  Google Scholar 

  8. D. Pietrobon, G. F. Azzone and D. Walz, Effect of funiculosin and antimycin A on the redox-driven H+-pumps in mitochondria: on the nature of “leaks”, Europ. J. Biochem. 117: 389 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. U. K. Moser and P. Walker, Funiculosin: a new specific inhibitor of the respiratory chain in rat liver mitochondria, FEBS Letters 50: 279 (1975).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Azzone, G.F., Pietrobon, D., Walz, D. (1982). The Molecular Slipping in the Redox-Driven H+ Pumps. In: Bossa, F., Chiancone, E., Finazzi-Agrò, A., Strom, R. (eds) Structure and Function Relationships in Biochemical Systems. Advances in Experimental Medicine and Bioligy, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9281-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9281-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9283-9

  • Online ISBN: 978-1-4615-9281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics