Skip to main content

Proton and Electric Charge Translocation in Mitochondrial Energy Transduction

  • Chapter
Structure and Function Relationships in Biochemical Systems

Part of the book series: Advances in Experimental Medicine and Bioligy ((AEMB,volume 148))

Abstract

Despite the fact that oxidative phosphorylation was first discovered over 40 years ago, we do not yet know precisely how ATP is generated from ADP and phosphate during mitochondrial respiration. This may seem rather paradoxical, since the synthesis of ATP coupled to mitochondrial electron transport is one of the most dynamic processes in cells and necessary for most of their activities. For example, a 70 kg adult with a caloric intake of 3000 kcal per day must generate almost 400 moles of ATP per day, if we therefore assume the standard free energy is +7.5kcal/mol. This amounts to about 190 kg of ATP, or 2.5 times his body weight. Since the body contains altogether only about 50 gm of ATP, the terminal phosphate group of body ATP must turn over several thousand times per day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. S. Rossi and A. L. Lehninger, Stoichiometric relationships between accumulation of ions by mitochondria and the energy-coupling sites in the respiratory chain, Biochem. Z. 338: 698 (1963).

    PubMed  CAS  Google Scholar 

  2. C. S. Rossi and A. L. Lehninger, Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria, J. Biol. Chem. 239: 3971 (1964).

    PubMed  CAS  Google Scholar 

  3. B. Reynafarje and A. L. Lehninger, the K+/site and H+/site stoichiometry of mitochondrial electron transport, J. Biol. Chem. 253:6331 (1978).

    PubMed  CAS  Google Scholar 

  4. R. Cockrell, E. J. Harris, and B. C. Pressman, Energetics of potassium transport in mitochondria induced by valinomycin, Biochem. 5:2326 (1966).

    Article  CAS  Google Scholar 

  5. E. Rossi and G. F. Azzone, Ion transport in liver mitochondria, Eur. J. Biochem. 7:418 (1969).

    Article  CAS  Google Scholar 

  6. P. Mitchell and J. Moyle, Stoichiometry of proton translocation through the respiratory chain and adenosine triphosphatase systems of rat liver mitochondria, Nature 208:147 (1965).

    Article  PubMed  CAS  Google Scholar 

  7. P. Mitchell and J. Moyle, Acid-base titration across the membrane system of rat-liver mitochondria, Biochem. J. 104:588 (1967).

    PubMed  CAS  Google Scholar 

  8. H. Rottenberg, The measurement of transmembrane electrochemical proton gradients, J. Bioenerg. 7:61 (1975).

    Article  PubMed  CAS  Google Scholar 

  9. D. G. Nicholls, The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat liver mitochondria as determined by ion distribution, Eur. J. Biochem. 50:305 (1974).

    Article  PubMed  CAS  Google Scholar 

  10. A. C. Schoolwerth and K. F. LaNoue, Metabolite transport in mitochondria, Ann. Rev. Biochem. 48: 871 (1979).

    Article  PubMed  Google Scholar 

  11. M. D. Brand, B. Reynafarje, and A. L. Lehninger, Re-evaluation of the H+/site ratio of mitochondrial electron transport with the oxygen pulse technique, J. Biol. Chem. 251:5670 (1976).

    PubMed  CAS  Google Scholar 

  12. B. Reynafarje, M. D. Brand, and A. L. Lehninger, Evaluation of the H+/site ratio of mitochondrial electron transport from rate measurements, J. Biol. Chem. 251:7442 (1976).

    PubMed  CAS  Google Scholar 

  13. J. Moyle and P. Mitchell, Cytochrome c oxidase is not a proton pump, FEBS Letts. 88:268 (1978).

    Article  CAS  Google Scholar 

  14. A. L. Lehninger, B. Reynafarje, and A. Alexandre, Stoichiometry of proton movements coupled to mitochondrial electron transport and ATP hydrolysis, in.: “Structure and Function of Energy-Transducing Membranes,” K. van Dam and B. V. van Gelder, eds., Elsevier, Amsterdam (1977), p. 95.

    Google Scholar 

  15. A. L. Lehninger, B. Reynafarje, A. Alexandre, and A. Villalobo, Proton stoichiometry and mechanisms in mitochondrial energy transduction, in: “Membrane Bioenergetics,” C-P. Lee, G. Schatz, and L. Ernster, eds., Addison-Wesley, Reading, MA (1979), p. 393.

    Google Scholar 

  16. A. Vercesi, B. Reynafarje, and A. L. Lehninger, Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria, J. Biol. Chem. 253:6379 (1978).

    PubMed  CAS  Google Scholar 

  17. A. Villalobo and A. L. Lehninger, The proton stoichiometry of electron transport in Ehrlich ascites tumor mitochondria, J. Biol. Chem. 254:4352 (1979).

    PubMed  CAS  Google Scholar 

  18. S. Papa, F. Guerrieri, M. Lorusso, G. Izzo, D. Boffoli, F. Capuano, N. Capitanio, and N. Altamura, The H+/e stoichiometry of respiration-linked proton translocation in the cytochrome system of mitochondria, Biochem. J. 192:203 (1980).

    PubMed  CAS  Google Scholar 

  19. M. Wikström and K. Krab, Respiration-linked H+ translocation in mitochondria: Stoichiometry and mechanism, Curr. Topics in Bioenerg. 10:51 (1980).

    Google Scholar 

  20. A. Alexandre, B. Reynafarje, and A. L. Lehninger, Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria, Proc. Natl. Acad. Sci. 75: 5296 (1978).

    Article  PubMed  CAS  Google Scholar 

  21. A. L. Lehninger, B. Reynafarje, P. Davies, A. Alexandre, A. Villalobo, and A. Beavis, The stoichiometry of H+ ejection coupled to mitochondrial electron flow, measured with a fast-responding oxygen electrode, in: “Mitochondria and Microsomes,” C. P. Lee, G. Schatz, and G. Dallner, eds., Addison-Wesley, Reading, MA (1979), p. 459.

    Google Scholar 

  22. M. D. Brand, W. G. Harper, D. G. Nicholls, and W. J. Ingledew, Unequal charge separation by different coupling spans of the mitochondrial electron transport chain, FEBS Letts. 95:125 (1978).

    Article  CAS  Google Scholar 

  23. E. Sigel and E. Carafoli, The proton pump of cytochrome c oxidase and its stoichiometry, Eur. J. Biochem. 89:119 (1978).

    Article  PubMed  CAS  Google Scholar 

  24. E. Sigel and E. Carafoli, The charge stoichiometry of cytochrome c oxidase in the reconstituted system, J. Biol. Chem. 254: 10572 (1979).

    PubMed  CAS  Google Scholar 

  25. R. P. Casey, J. B. Chappell, and A. Azzi, Limited-turnover studies on proton translocation in reconstituted cytochrome c oxidase-containing vesicles, Biochem. J. 182:149 (1979).

    PubMed  CAS  Google Scholar 

  26. A. Alexandre, The stoichiometry of H+ ejection coupled to oxidation of ferrocytochrome c by rat liver mitoplasts, Fed. Proc. 39:1706 (1980).

    Google Scholar 

  27. A. Beavis, The stoichiometry of K+ accumulation coupled to mitochondrial respiration — a solution to the controversy, Fed. Proc. 40:1563 (1981).

    Google Scholar 

  28. J. J. Lemasters, Near thermodynamic equilibrium of oxidative phosphorylation by inverted inner membrane vesicles of rat liver mitochondria, FEBS Letts. 110:96 (1980).

    Article  CAS  Google Scholar 

  29. M. Wikström, Energy-dependent reversal of the cytochrome oxidase reaction, Proc. Natl. Acad. Sci. 78:4051 (1981).

    Article  PubMed  Google Scholar 

  30. T. Pozzan, V. Miconi, F. Di Virgilio, and G. F. Azzone, H+/site, charge/site, and ATP/site ratios at coupling sites I and II in mitochondrial e transport, J. Biol. Chem. 254:10200 (1979).

    CAS  Google Scholar 

  31. G. F. Azzone, T. Pozzan, and F. Di Virgilio, H+/site, charge/site, and ATP/site ratios at coupling site III in mitochondrial electron transport, J. Biol. Chem. 254:10206 (1979).

    PubMed  CAS  Google Scholar 

  32. P. C. Hinkle and M. L. Yu, The phosphorus/oxygen ratio of mitochondrial oxidative phosphorylation, J. Biol. Chem. 254: 2450 (1979).

    PubMed  CAS  Google Scholar 

  33. J. W. Stücki, The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation, Eur. J. Biochem. 109:269 (1980).

    Article  PubMed  Google Scholar 

  34. D. Pietrobon, G. F. Azzone, and D. Walz, Effect of funiculosin and antimycin A on the redox-driven H+-pumps in mitochondria: On the nature of “leaks,” Eur. J. Biochem. 117:389 (1981).

    Article  PubMed  CAS  Google Scholar 

  35. P. Mitchell, Compartmentation and communication in living systems. Ligand conduction: A general catalytic principle in chemical, osmotic, and chemiosmotic reaction systems, Eur. J. Biochem. 95:1 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. A. L. Lehninger, Proton transport and charge separation across the mitochondrial membrane coupled to electron flow, in: “Protons and Ions Involved in Fast Dynamic Phenomena,” P. Laszlo, ed., Elsevier, Amsterdam (1978), p. 435.

    Google Scholar 

  37. A. Alexandre, F. Galiazzo, and A. L. Lehninger, On the location of the H+-extruding steps in site 2 of the mitochondrial electron transport chain, J. Biol. Chem. 255:10721 (1980).

    PubMed  CAS  Google Scholar 

  38. A. Beavis, Re-evaluation of the P/O ratios of rat liver mitochondria, Fed. Proc. 39:2056 (1980).

    Google Scholar 

  39. M. C. Sorgato and S. H. Ferguson, unpublished observations.

    Google Scholar 

  40. P. D. Boyer, B. Chance, L. Ernster, P. Mitchell, E. Racker, and E. C. Slater, Oxidative phosphorylation and photophosphorylation, Ann. Rev. Biochem. 46:955 (1977).

    Article  PubMed  CAS  Google Scholar 

  41. K. R. H. Repke and R. Schön, Flip-flop model of energy interconversion by ATP synthetase, Acta Biol. Med. Ger. 33:K27 (1974).

    PubMed  CAS  Google Scholar 

  42. R. Adolfsen and E. Moudrianakis, Molecular polymorphism and mechanism of activation and deactivation of the hydrolytic function of the coupling factor of oxidative phosphorylation, Biochem. 15:4163 (1976).

    Article  CAS  Google Scholar 

  43. P. D. Boyer, The coupling of proton translocation to ATP formation, in: “Mitochondria and Microsomes,” C. P. Lee, G. Schatz, and G. Dallner, eds., Addison-Wesley, Reading, MA (1981), p. 407.

    Google Scholar 

  44. J. W. Soper, G. L. Decker, and P. L. Pedersen, Mitochondrial ATPase complex. A dispersed, cytochrome-deficient, oligomycin-sensitive preparation from rat liver containing molecules with a tripartite structural arrangement, J. Biol. Chem. 254:11170 (1979).

    PubMed  CAS  Google Scholar 

  45. M. L. Amzel and P. L. Pedersen, Adenosine triphosphatase from rat liver mitochondria. Crystallization and x-ray diffraction studies of the F1-component of the enzyme, J. Biol. Chem. 253:2067 (1978).

    PubMed  CAS  Google Scholar 

  46. M. L. Amzel, Structure of F1ATPases, J. Bioenerg. & Biomem. 13: 109 (1981).

    Article  CAS  Google Scholar 

  47. M. L. Amzel, M. McKinney, P. Narayanan, and P. L. Pedersen, Structure of the mitochondrial F1-ATPase at 9 Å resolution, Nature (submitted).

    Google Scholar 

  48. R. J. P. Williams, Possible functions of chains of catalysts, J. Theor. Biol. 1:1 (1961).

    Article  PubMed  CAS  Google Scholar 

  49. B. T. Storey, D. M. Scott, and C-P. Lee, Energy-linked quinacrine fluorescence changes in submitochondrial particles from skeletal muscle mitochondria. Evidence for intramem-brane H+ transfer as a primary reaction of energy coupling, J. Biol. Chem. 255:5224 (1980).

    PubMed  CAS  Google Scholar 

  50. D. B. Kell, On the functional proton current pathway of electron transport phosphorylation, Biochim. Biophys. Acta 549:55 (1979).

    PubMed  CAS  Google Scholar 

  51. H. Michel and D. Oesterhelt, Electrochemical proton gradient across the cell membrane of Halobacterium halobium; Effect of N,N’-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient, Biochem. 19:4607 (1980).

    Article  CAS  Google Scholar 

  52. H. T. Witt, Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric field, Biochim. Biophys. Acta 505:355 (1979).

    PubMed  CAS  Google Scholar 

  53. B. A. Melandri and A. Baccarini-Melandri, Bioenergetics of the early events of bacterial photophosphorylation, in: “Cation Flux Across Biomembranes,” Y. Mukohata and L. Packer, eds., Academic Press, New York (1979), p. 219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Lehninger, A.L. (1982). Proton and Electric Charge Translocation in Mitochondrial Energy Transduction. In: Bossa, F., Chiancone, E., Finazzi-Agrò, A., Strom, R. (eds) Structure and Function Relationships in Biochemical Systems. Advances in Experimental Medicine and Bioligy, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9281-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9281-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9283-9

  • Online ISBN: 978-1-4615-9281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics