Skip to main content

Organic and Inorganic Species at Ag, Cu, and Au Electrodes

  • Chapter
Surface Enhanced Raman Scattering

Abstract

Surface enhanced Raman scattering (SERS) allows the characterisation of a variety of organic and inorganic adsorbates on several metal electrodes. Hitherto, most investigations have been performed in order to obtain insights into the enhancement mechanisms as the basis for future spectroscopic employments. Since the detection of SERS by Fleischmann and coworkers1–2 and Van Duyne et al.,3–4 SERS effects have been observed only for specifically prepared metal surfaces.5–10 Intense SERS can be generated, for instance, at Ag, Cu, and Au substrates (in situ and under UHV conditions) by roughening or use of particular surface geometries such as small spheres, ellipsoids, islands, gratings, or thin films on hemicylinders.11–20 In addition, experimental evidence has been given for the relevance of chemisorption on SERS. In particular, there is a growing amount of data which point to the importance of adatom-adsorbate structures for the enhancement. 21–29

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26:163 (1974).

    Article  ADS  Google Scholar 

  2. M. Fleischmann, P. J. Hendra, A. J. McQuillan, R. L. Paul, and E. S. Reid, Raman spectroscopy at electrode-electrolyte interfaces, J. Raman Spectrosc. 4:269 (1976).

    Article  ADS  Google Scholar 

  3. R. P. Van Duyne, Applications of Raman spectroscopy in electro-chemistry, J. Physique 38:239 (1976).

    Google Scholar 

  4. D. L. Jeanmaire and R. P. Van Duyne, Surface Raman spectroelec-trochemistry. Part I. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. 84:1 (1977).

    Article  Google Scholar 

  5. R. P. Cooney, M. Fleischmann, and P. J. Hendra, Raman spectrum of carbon monoxide on a platinum electrode surface, J.C.S. Chem. Commun. 7:235 (1977).

    Article  Google Scholar 

  6. J. A. Creighton, M. G. Albrecht, R. E. Hester, and J. A. D. Matthew, The dependence of the intensity of Raman bands of pyridine at a silver electrode on the wavelength of excitation, Chem. Phys. Lett. 55:55 (1978).

    Article  ADS  Google Scholar 

  7. B. Pettinger and U. Wenning, Raman spectra of pyridine adsorbed on silver (100) and (111) electrode surfaces, Chem. Phys. Lett. 56:253 (1978).

    Article  ADS  Google Scholar 

  8. A. Otto, Raman spectra of (CN)- adsorbed at a silver surface, Surf. Sci. 75:L392 (1978).

    Article  ADS  Google Scholar 

  9. E. Burstein, Y. J. Chen, S. Lundquist, and E. Tosatti, “Giant” Raman scattering by adsorbed molecules on metal surfaces, Solid State Commun. 29:567 (1979).

    Article  ADS  Google Scholar 

  10. T. E. Furtak and J. Reyes, A critical analysis of theoretical models for the giant Raman effect from adsorbed molecules, Surf. Sci. 93:351 (1980).

    Article  ADS  Google Scholar 

  11. B. Pettinger, U. Wenning, and H. Wetzel, Surface plasmon en-hanced Raman scattering. Frequency and angular resonances of Raman scattered light from pyridine on Au, Ag and Cu electrodes, Surf. Sci. 101:409 (1980).

    Article  ADS  Google Scholar 

  12. H. Abe, W. Schulze, and B. Tesche, Surface-enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles, Chem. Phys. 47:95 (1980).

    Article  Google Scholar 

  13. J. E. Rowe, C. V. Shank, D. A. Zwemer, and C. A. Murray, Ultrahigh-vacuum studies of enhanced Raman scattering from pyridine on Ag surfaces, Phys. Rev. Lett. 44:1770 (1980).

    Article  ADS  Google Scholar 

  14. T. H. Wood and M. V. Klein, Studies of the mechanism of enhanced Raman scattering in ultrahigh vacuum, Solid State Commun. 35:263 (1980).

    Article  ADS  Google Scholar 

  15. C. Y. Chen and E. Burstein, Giant Raman scattering by mole-cules at metal-island films, Phys. Rev. Lett. 45:1287 (1980).

    Article  ADS  Google Scholar 

  16. H. Seki and M. R. Philpott, Surface enhanced Raman scattering by pyridine on silver island films, Surf. Sci., in press (1981).

    Google Scholar 

  17. J. C. Tsang, J. R. Kirtley, and J. A. Bradley, Surface enhanced Raman spectroscopy and surface plasmons, Phys. Rev. Lett. 43:772 (1979).

    Article  ADS  Google Scholar 

  18. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, J. Chem. Soc. Faraday II 75:790 (1979).

    Article  Google Scholar 

  19. H. Wetzel and H. Gerischer, Surface enhanced Raman scattering from pyridine and halide ions adsorbed on silver and gold sol particles, Chem. Phys. Lett. 76:460 (1980).

    Article  ADS  Google Scholar 

  20. B. Pettinger, A. Tadjeddine, and D. M. Kolb, Enhancement in Raman intensity by use of surface plasmons, Chem. Phys. Lett. 66:544 (1979).

    Article  ADS  Google Scholar 

  21. A. Otto, J. Timper, J. Billmann, G. Kovacs, and I. Pockrand, Surface roughness induced electronic Raman scattering, Surf. Sci. 92:L55 (1980).

    Article  Google Scholar 

  22. A. Otto, Raman scattering from adsorbates on silver, Surf. Sci. 92:145 (1980).

    Article  ADS  Google Scholar 

  23. A. Otto, J. Timper, J. Billmann, and I. Pockrand, Enhanced inelastic light scattering from metal electrodes caused by adatoms, Phys. Rev. Lett. 45:46 (1980).

    Article  ADS  Google Scholar 

  24. E. Burstein, C. Y. Chen, and S. Lundquist, in: “Proceedings of the US-USRR Symposium on Inelastic Light Scattering in Solids”, J. L. Birman, H. Z. Cummins, and K. K. Rebane, eds., Plenum Publishing Corp., New York (1979), p. 479.

    Google Scholar 

  25. R. E. Benner, K. U. von Raben, R. Dornhaus, R. K. Chang, B. L. Laube, and F. A. Otter, Correlation of SERS with cyclic voltammetry for cyanide complexes adsorbed on Cu electrodes, Surf. Sci. 102:7 (1981).

    Article  ADS  Google Scholar 

  26. B. Pettinger and H. Wetzel, Surface enhanced Raman spec-troscopy of pyridine on Ag electrodes. Complex formation, Chem. Phys. Lett. 78:398 (1981).

    Article  ADS  Google Scholar 

  27. B. Pettinger, M. R. Philpott, and J. G. Gordon II, Contribution of specifically adsorbed ions, water and impurities to the surface enhanced Raman spectroscopy (SERS) of Ag electrodes, J. Chem. Phys. 74:934 (1981).

    Article  ADS  Google Scholar 

  28. H. Wetzel, H. Gerischer, and B. Pettinger, Surface enhanced Raman scattering from silver-halide and silver-pyridine vibrations and the role of silver-adatoms, Chem. Phys. Lett. 78:392 (1981).

    Article  ADS  Google Scholar 

  29. H. Wetzel, H. Gerischer, and B. Pettinger, Surface enhanced Raman scattering from silver-cyanide and silver-thiocyanate and the importance of ad-atoms, Chem. Phys. Lett. 80:159 (1981).

    Article  ADS  Google Scholar 

  30. M. Moskovits, Enhanced Raman scattering by molecules adsorbed on electrodes. A theoretical model, Solid State Commun. 32:59 (1979).

    Article  ADS  Google Scholar 

  31. R. P. Van Duyne, Laser excitation of Raman scattering from adsorbed molecules on electrode surfaces, in: “Chemical and Biochemical Applications of Lasers,” Vol. IV, C. B. Moore, ed., Academic Press, New York (1979), p. 101.

    Google Scholar 

  32. R. M. Hexter and M. G. Albrecht, Metal surface Raman spec-troscopy: Theory, Spectrochim. Acta 35A:233 (1979).

    ADS  Google Scholar 

  33. M. Kerker, D.-S. Wang, and H. Chen, Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: Errata, Appl. Opt. 19:4159 (1980).

    Article  ADS  Google Scholar 

  34. F. W. King, R. P. Van Duyne, and G. C. Schatz, Theory of Raman scattering by molecules adsorbed on electrode surfaces, J. Chem. Phys. 69:4472 (1978).

    Article  ADS  Google Scholar 

  35. S. S. Jha, J. R. Kirtley, and J. Tsang, Intensity of Raman scattering from molecules adsorbed on a metallic grating, Phys. Rev. B 22:3973 (1980).

    Article  ADS  Google Scholar 

  36. A. Otto, Surface enhanced Raman scattering (SERS), what do we know?, Appl. Surf. Sci. 6:309 (1980).

    Article  Google Scholar 

  37. S. L. McCall, P. M. Platzman, and P. A. Wolff, Surface enhanced Raman scattering, Phys. Lett. 77A:381 (1980).

    ADS  Google Scholar 

  38. S. Efrima and H. Metiu, Light scattering by a molecule near a solid surface. II. Model calculations, J. Chem. Phys. 70:2297 (1979).

    Article  ADS  Google Scholar 

  39. A. Regis and J. Corset, A chemical interpretation of the intense Raman spectra observed at a silver electrode in the presence of chloride ion and pyridine: Formation of radicals, Chem. Phys. Lett. 70:305 (1980).

    Article  ADS  Google Scholar 

  40. B. Pettinger, U. Wenning, and D. M. Kolb, Raman and reflectance spectroscopy of pyridine adsorbed on single crystalline silver electrodes, Ber. Bunsenges. Physik. Chem. 82:1326 (1978).

    Google Scholar 

  41. S. G. Schultz, M. Janik-Czachor, and R. P. Van Duyne, Surface enhanced Raman spectroscopy: A re-examination of the role of surface roughness and electrochemical anodization, Surf. Sci. 104:419 (1981).

    Article  ADS  Google Scholar 

  42. R. Dornhaus and R. K. Chang, Comments on the 210–243 cm mode in surface enhanced Raman scattering from the pyridine-Ag system, Solid State Commun. 34:811 (1980).

    Article  ADS  Google Scholar 

  43. B. Pettinger, Surface enhanced Raman spectroscopy (SERS) of pyridine on Ag electrodes. Evidence for overtones, Chem. Phys. Lett. 78:404 (1981).

    Article  ADS  Google Scholar 

  44. R. P. Cooney, M. R. Mahoney, and M. W. Howard, Intense Raman spectra of surface carbon and hydrocarbons on silver electrodes, Chem. Phys. Lett. 76:488 (1980).

    Article  ADS  Google Scholar 

  45. M. R. Mahoney, M. W. Howard, and R. P. Cooney, Carbon dioxide conversion to hydrocarbons at silver electrode surfaces. Raman spectroscopic evidence for surface carbon intermediates, Chem. Phys. Lett. 71:59 (1980).

    Article  ADS  Google Scholar 

  46. G. Lehmphuhl, private communication.

    Google Scholar 

  47. A. Girlando, M. R. Philpott, D. Heitmann, J. D. Swalen, and R. Santo, Raman spectra of thin organic films enhanced by plasmon surface polaritons on holographic metal gratings, J. Chem. Phys. 72:5137 (1980).

    Article  ADS  Google Scholar 

  48. A. Tadjeddine and D. M. Kolb, The optical properties of the silver-pyridine surface complex, J. Electroanal. Chem. 111:119 (1980).

    Article  Google Scholar 

  49. B. Pettinger, Evidence of overtones and combination modes in the surface enhanced Raman scatterings in: “Proceedings of the Vllth International Conference on Raman Spectroscopy,” Ottawa, Canada, August 1980, W. F. Murphy, ed., North-Holland Publishing Co., Amsterdam, New York (1980), p. 412.

    Google Scholar 

  50. H. Wetzel, B. Pettinger, and U. Wenning, Surface enhanced Raman scattering from ethylendiaminetetraacetic-disodium salt and nitrate ions on silver electrodes, Chem. Phys. Lett. 75:173 (1980).

    Article  ADS  Google Scholar 

  51. M. Fleischmann, P. J. Hendra, I. R. Hill, and M. E. Pemble, Enhanced Raman spectra from species formed by the co-adsorption of halide ions and water molecules on silver electrodes, J. Electroanal. Chem. 117:233 (1980).

    Google Scholar 

  52. G. Burns, F. Dacol, and R. Alben, Lattice dynamics of simple superionic conductors, Solid State Commun. 32:71 (1979).

    Article  ADS  Google Scholar 

  53. B. Pettinger, M. R. Philpott, and J. G. Gordon II, Surface en-hanced Raman spectroscopy (SERS) of metal halide vibrations on Ag and Cu electrodes, J. Chem. Phys., in press (1981).

    Google Scholar 

  54. J. Billmann, G. Kovacs, and Ac Otto, Enhanced Raman effect from cyanide adsorbed on a silver electrode, Surf. Sci. 92:153 (1980).

    Article  ADS  Google Scholar 

  55. I. Pockrand, A. Otto, Surface enhanced and disorder induced Raman scattering from silver films, Solid State Commun. 37:109 (1981).

    Article  Google Scholar 

  56. I. Pockrand and A. Otto, Raman scattering from silver/vacuum interfaces, Appl. Surf. Sci. 6:362 (1980).

    Article  Google Scholar 

  57. P. M. Platzman, S. L. McCall, and P. A. Wolff, Surface en-hanced Raman scattering, in: “Proceedings of the Vllth International Conference on Raman Spectroscopy,” Ottawa, Canada, August 1980, W. F. Murphy, ed., North-Holland Publishing Co., Amsterdam, New York (1980), p. 390.

    Google Scholar 

  58. B. Pettinger and H. Wetzel, Surface enhanced Raman scattering from pyridine, water and halide ions on Au, Ag and Cu electrodes, Ber. Bunsenges. Physik. Chem., in press (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Pettinger, B., Wetzel, H. (1982). Organic and Inorganic Species at Ag, Cu, and Au Electrodes. In: Chang, R.K., Furtak, T.E. (eds) Surface Enhanced Raman Scattering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9257-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9257-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9259-4

  • Online ISBN: 978-1-4615-9257-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics