Skip to main content

Molecule-Silver Separation Dependence

  • Chapter
Surface Enhanced Raman Scattering

Abstract

In this chapter I will discuss some of the surface enhanced Raman scattering (SERS) experiments with which I have been involved, focusing on one aspect of the results: the determination of the molecule-surface separation dependence of the Raman scattering enhancement of a molecule placed near a silver enhancing surface. This aspect of the SERS problem is important for both conceptual and practical reasons: conceptual, as the knowledge of the spatial range of SERS is crucial for determining its mechanisms; and practical, as one needs to know just how surface sensitive a technique it is for potential applications. We find that different silver surfaces exhibit spatial ranges of Raman enhancement which vary considerably from roughly 5 to 50 Å. How can this large variation be explained? Is this observed behavior consistent with proposed mechanisms for SERS? Can we make use of the information we have gained in the experiments for the development of a new surface spectroscopy? I believe that the different spatial ranges of Raman enhancement found for various surfaces can be explained by differences in the surface roughness features from sample to sample and are qualitatively consistent with proposed electromagnetic enhancement mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. L. McCall and P. M. Platzman, Raman scattering from chemisorbed molecules at surfaces, Phys. Rev. B 22: 1660 (1980)

    Article  ADS  Google Scholar 

  2. J. I. Gersten, R. L. Birke and J. R. Lombardi, Theory of enhanced light scattering from molecules adsorbed at the metal-solution interface, Phys. Rev. Lett. 43: 147 (1979)

    Article  ADS  Google Scholar 

  3. F. R. Aussenegg and M. E. Lippitch, On Raman scattering in molecular complexes involving charge transfer, Chem. Phys. Lett. 59: 214 (1978).

    Article  ADS  Google Scholar 

  4. J. R. Kirtley, S. S. Jha, and J. C. Tsang, Surface plasmon model of surface enhanced Raman scattering, Solid State Commun. 35: 509 (1980).

    Article  ADS  Google Scholar 

  5. E. Burstein, Y. J. Chen, C. Y. Chen, S. Lundquist and E. Tosatti, Giant Raman scattering by adsorbed molecules on metal surfaces, Solid State Commun. 29: 565 (1979)

    Article  Google Scholar 

  6. J. Billman, G. Kovacs, A. Otto, Enhanced Raman effect from cyanide adsorbed on a silver electrode, Surf. Science 92: 153 (1980); A. Otto, I. Pock-rand, J. Billman, and C. Pettenkofer, chapter in this volume.

    Article  ADS  Google Scholar 

  7. M. R. Philpott, Effect of surface plasmons on transitions in molecules, J. Chem. Phys. 62: 1812 (1975)

    Article  ADS  Google Scholar 

  8. S. Effrima and H. Metiu, Resonant Raman scattering by adsorbed molecules, J. Chem. Phys. 70: 2297 (1979)

    Article  ADS  Google Scholar 

  9. R. M. Hexter and M. G. Albrecht, Metal surface Raman spectroscopy: Theory, Spectrochemica Acta 35A [3], (1979)

    Google Scholar 

  10. D. P. Dilella, A. Gohin, R. H. Lipson, P. McBreen, and M. Moskovits, Enhanced Raman spectroscopy of CO adsorbed on vapor-deposited silver, J. Chem. Phys. 73: 4282 (1980)

    Article  ADS  Google Scholar 

  11. H. Ueba, Effective resonant light scattering from adsorbed molecules, J. Chem. Phys. 73: 725 (1980); H. Ueba, chapter in this volume.

    Article  ADS  Google Scholar 

  12. J. D. E. Mclntyre, Optical reflection spectroscopy of chemisorbed monolayers, in: “Optical Properties of Solids-New Developments”, B. O. Seraphim, ed., North Holland, Amsterdam (1976)

    Google Scholar 

  13. R. G. Greenler and T. L. Slager, Method for obtaining the Raman spectrum of a thin film on a metal surface, Spectrochim. Acta 29A: 193 (1973).

    ADS  Google Scholar 

  14. F. W. King, R. P. VanDuyne, and G. C. Schatz, Theory of Raman scattering by molecules adsorbed on electrode surfaces, J. Chem. Phys. 69: 4472 (1978)

    Article  ADS  Google Scholar 

  15. G. L. Easley and J. R. Smith, Enhanced Raman scattering on metal surfaces, Solid State Commun. 31: 815 (1979)

    Article  ADS  Google Scholar 

  16. S. Effrima and H. Metiu, Classical theory of light scattering by an adsorbed molecule. I. Theory, and Resonant Raman scattering by adsorbed molecules, J. Chem. Phys. 70: 1602, 2297 (1979); G. C. Schatz and T. K. Lee and J. L. Birman, chapters in this volume.

    Article  ADS  Google Scholar 

  17. P. R. Hilton and D. W. Oxtoby, Surface enhanced Raman spectra: A critical review of the image dipole description, J. Chem. Phys. 72: 6346 (1980); G. W. Ford and W. H. Weber, Electonmagnetic effects of a molecule at a metal surface. I-Effects of nonlocality and finite molecular size, to be published.

    Article  ADS  Google Scholar 

  18. N. D. Lang and A. R. Williams, Theory of atomic chemisorption on simple metals, Phys. Rev. B 18: 616 (1978)

    Article  ADS  Google Scholar 

  19. W. H. Weber and G. W. Ford, Enhanced Raman scattering by adsorbates including the nonlocal response of the metal and the excitation of nonradiative modes, Phys. Rev. Lett. 44: 1774 (1980); G. Korzeniewski, T. Maniv, and H. Metiu, Electrodynamics at metal surfaces. IV. The Electric fields caused by the polarization of a metal surface by an oscillating dipole, to be published.

    Article  ADS  Google Scholar 

  20. J. C. Tsang, J. R. Kirtley and T. N. Theis, Surface plasmon polariton contributions to Stokes emission from molecular monolayers on periodic Ag surfaces, Solid State Commun. 35: 667 (1980).

    Article  ADS  Google Scholar 

  21. P. K. Aravind and H. Metiu, The enhancement of Raman and fluorescent intensity by small surface roughness I. The change of dipole emission, Chem. Phys. Lett. 74: 301, (1980).

    Article  ADS  Google Scholar 

  22. W. H. Weber and G. W. Ford, Optical electric-field enhancement at a metal surface arising from surface plasmon excitation, Opt. Lett. 6: 122 (1981).

    Article  ADS  MATH  Google Scholar 

  23. H. Raether, Surface plasma oscillations and their applications, in: “Physics of Thin Films,” eds. G. Hass, M. Francombe and R. Hoffman, Academic Press, New York (1977); and references therein.

    Google Scholar 

  24. Y. J. Chen, W. P. Chen and E. Burstein, Surface-electronmagnetic-wave-enhanced Raman scattering by overlayers on metals, Phys. Rev. Lett. 36: 1207 (1976).

    Article  ADS  Google Scholar 

  25. S. S. Jha, J. R. Kirtley and J. C. Tsang, Intensity of Raman scattering from molecules adsorbed on a metallic grating, Phys. Rev. B 22: 3973 (1980); and S. S. Jha, chapter in this volume.

    Article  ADS  Google Scholar 

  26. P. K. Aravind, E. Hood and H. Metiu, Angular resonances in the emission from a dipole located near a grating, to be published.

    Google Scholar 

  27. For example, see: J. G. Endriz and W. E. Spicer, Study of Al films. I. Optical Studies of reflectance drops and surface oscillations on controlled-roughness films, Phys. Rev. B 4: 4144 (1971); J. A. Creighton, chapter in this volume.

    Article  ADS  Google Scholar 

  28. J. P. Marton and J. R. Lemon, Optical properties of aggregated metal systems, Phys. Rev. B 4: 271 (1971).

    Article  ADS  Google Scholar 

  29. C. Y. Chen and E. Burstein, Giant Raman scattering by molecules at metal-island films, Phys. Rev. Lett. 45: 1287 (1980)

    Article  ADS  Google Scholar 

  30. E. Burstein, C. Y. Chen and S. Lundquist, Giant Raman scattering by molecules adsorbed on metals: An overview, in: “Proceedings of the Second Joint U.S.-U.S.S.R.- Symposium on Inelastic Light Scattering in Condensed Matter,” eds. J. L. Birman, H. V. Cummins, and K. K. Rebane, Plenum, New York (1979), p. 429; E. Burstein and D. L. Mills, chapter in this volume.

    Google Scholar 

  31. See, for example: R. S. Sennett and G. D. Scott, The structure of evaporated metal films and their optical properties, J. Opt. Soc. Am. 40: 203 (1950).

    Article  ADS  Google Scholar 

  32. S. L. McCall, P. M. Platzman, and P. A. Wolff, Surface enhanced Raman scattering, Phys. Lett. 77A: 381 (1980).

    ADS  Google Scholar 

  33. D. S. Wang, M. Kerker, and H. Chew, Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata Appl. Opt. 19: 4159 (1980)

    Article  ADS  Google Scholar 

  34. J. L. Gersten and A. Nitzan, Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces, J. Chem. Phys. 73: 3023 (1980)

    Article  ADS  Google Scholar 

  35. F. J. Adrian, Surface enhanced Raman scattering by surface plasmon enhancement of electromagnetic fields near spheriodal particles on a roughened metal surface, Chem. Phys. Lett. 78: 45 (1981); and chapters in this volume by J. I. Gersten and A. Nitzan, and M. Kerker, D. S. Wang, H. Chew, O. Siiman and L. A. Bumm.

    Article  ADS  Google Scholar 

  36. E. C. Stoner, The demagnetizing factors for ellipsoids, Phil. Mag. 36: 803 (1945).

    Google Scholar 

  37. J. E. Sansonetti and J. K. Furdyna, Depolarization effects in arrays of spheres, Phys. Rev. B 22: 2866 (1980)

    Article  ADS  Google Scholar 

  38. T. Yamagudi, S. Yoshida and A. Kinbara, Effect of retarded dipole-dipole interactions between island particles on the optical plasma-resonance absorption of a silver-island film, J. Opt. Soc. Am. 64: 1563 (1974); and references therein.

    Article  ADS  Google Scholar 

  39. J. E. Rowe, C. V. Shank, D. A. Zwemer and C. A. Murray, Ultrahigh-vacuum studies of enhanced Raman scattering from pyridine on Ag surfaces, Phys. Rev. Lett. 44: 1770 (1980)

    Article  ADS  Google Scholar 

  40. also see D. A. Zwemer, C. V. Shank and J. E. Rowe, Surface enhanced Raman scattering as a function of molecule-surface separation, Chem. Phys. Lett. 73: 201 (1980).

    Article  ADS  Google Scholar 

  41. J. E. Demuth, K. Christmann and P. N. Sanda, The vibrations and structure of pyridine chemisorbed on Ag(111): The occurrence of a compressional phase transformation, Chem. Phys. Lett. 76: 201 (1980).

    Article  ADS  Google Scholar 

  42. S. R. Kelemen and A. Kaldor, Pyridine adsorption on Ag(110), Chem. Phys. Lett. 73: 205 (1980).

    Article  ADS  Google Scholar 

  43. G. L. Easley, J. M. Burkstrand and D. L. Simon, X-Ray photoemission and Raman spectroscopy investigation of pyridine on Ag, to be published.

    Google Scholar 

  44. M. Udagawa, C. C. Chow, J. C. Hemminger and S. Ushioda, Raman scattering cross-section of adsorbed pyridine molecules on a smooth silver surface, to be published.

    Google Scholar 

  45. W. Schindler and H. Posch, Rayleigh and Raman light scattering from pyridine-water mixtures, Chem. Phys. 43: 9 (1979).

    Article  Google Scholar 

  46. I. Pockrand and A. Otto, Coverage dependence of Raman scattering from pyridine adsorbed to silver/vacuum interfaces, Solid State Commun. 35: 861 (1980).

    Article  ADS  Google Scholar 

  47. T. H. Wood, D. A. Zwemer, C. V. Shank and J. E. Rowe, The dependence of surface-enhanced Raman scattering on surface preparation: Evidence for an electromagnetic mechanism, to be published; and T. H. Wood, private communication.

    Google Scholar 

  48. T. H. Wood and M. V. Klein, Studies of the mechanism of enhanced Raman scattering in ultra-high vacuum, Solid State Commun. 35: 263 (1980).

    Article  ADS  Google Scholar 

  49. I. Pockrand and A. Otto, Surface enhanced Raman scattering (SERS): Annealing the silver substrate, to be published.

    Google Scholar 

  50. H. Seki and M. R. Philpott, Surface enhanced Raman scattering by pyridine on silver island films in ultra-high vacuum, J. Chem. Phys. 73: 5376 (1980); H. Seki, SERS of pyridine on Ag island films prepared on a sapphire substrate, Proceedings of Am. Vac. Soc. Symp. Oct. 1980, J. Vac. Sci. Tech, to be published.

    Article  ADS  Google Scholar 

  51. R. R. Smardewski, R. J. Colton and J. S. Murday, Enhanced Raman scattering by pyridine physisorbed on a clean silver surface in ultra-high vacuum, Chem. Phys. Lett. 68: 53 (1979).

    Article  ADS  Google Scholar 

  52. G. L. Easley, Coverage dependence of enhanced adsórbate Raman scattering, Phys. Lett. 81: 193 (1981).

    Article  Google Scholar 

  53. P. N. Sanda, J. M. Warlaumont, J. E. Demuth, J. C. Tsang, K. Christmann, and J. A. Bradley, Surface enhanced Raman scattering from pyridine on Ag(111), Phys. Rev. Lett. 45: 1519 (1980); also see P. N. Sanda, J. E. Demuth, J. C. Tsang, and J. M. Warlaumont, chapter in this volume.

    Article  ADS  Google Scholar 

  54. In collaboration with D. L. Aliara.

    Google Scholar 

  55. D. L. Aliara, A. Baca, and C. A. Pryde, Distortions of band shapes in external reflection infra-red spectra of thin polymer films on metal substrates, Macro-molecules 11: 1215 (1978).

    Article  ADS  Google Scholar 

  56. H. Gebhard and E. Killmann, Ellipsometric investigation of the adsorption of polystyrene and polymethylmethacrylate on metal surfaces, Angew Makromole Chem. 53: 171 (1976).

    Article  Google Scholar 

  57. C. A. Murray, D. L. Aliara and M. Rhinewine, Silver-molecule separation dependence of surface-enhanced Raman scattering, Phys. Rev. Lett. 46: 57 (1981).

    Article  ADS  Google Scholar 

  58. C. A. Murray and D. L. Aliara, Measurement of the molecule-silver separation dependence of surface enhanced Raman scattering in multilayered structures, to be published.

    Google Scholar 

  59. R. F. Roberts, D. L. Aliara, C. A. Pryde, D. N. E. Buchanan and N. D. Hobbins, Mean-free path for inelastic scattering of 1.2 keV electrons in thin polymethylmethacrylate films, Surf, and Interface Anal. 2: 5 (1980).

    Article  Google Scholar 

  60. In collaboration with D. L. Aliara and A. H. Hebard.

    Google Scholar 

  61. For example: C. K. Chen, A. R. B. deCastro, Y. R. Shen, Surface enhanced second harmonic generation, Phys. Rev. Lett. 46: 145 (1981); J. P. Heritage and A. M. Glass, chapter in this volume.

    Article  ADS  Google Scholar 

  62. For example: P. F. Liao, J. G. Bergman, D. S. Chemla, A. Wokaun, J. Melugailis, A. M. Hawryluk and N. P. Economou, Surface enhanced Raman scattering from microlithographic silver surfaces, to be published; and P. F. Liao, chapter in this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Murray, C.A. (1982). Molecule-Silver Separation Dependence. In: Chang, R.K., Furtak, T.E. (eds) Surface Enhanced Raman Scattering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9257-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9257-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9259-4

  • Online ISBN: 978-1-4615-9257-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics