Clinical Aspects of Gastrointestinal Mucus

  • G. Forstner
  • A. Wesley
  • J. Forstner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 144)


In his Croonian Lecture of 1964,1 Sir Howard Florey attributed three significant functions to gastrointestinal mucus: protection of the underlying mucosa from chemical and physical injury, lubrication of the mucosal surface to facilitate passage of luminal ingredients and the removal of parasites by binding and entrapment. In re-reading Florey’s seminal contribution to this field, one is struck by the little our understanding of the fundamental functions of mucus has expanded in the intervening years. To a great extent even the three “Floreyian” roles for this “slimey secretion” remain articles of faith, buttressed at best, by indirect and circumstantial pieces of evidence which lack convincing bite. If I can use a phrase turned by a Torontonian philosopher, Marshall McLuhan, it may be as true of mucus as of modern communication that “the medium is the message”. If so, we will probably never understand function fully until the structural and organizational complexities of mucus are unravelled.


Cystic Fibrosis Sialic Acid Goblet Cell Cholera Toxin Mucus Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Florey, Mucin and the protection of the body, Proc. Roy. Soc. London, Series B, 143: 147 (1955).CrossRefGoogle Scholar
  2. 2.
    J. Schrager, and M. D. G. Oates, The isolation and composition of the major glycoprotein from human gastric aspirates, Gut 12: 559 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Snary, and A. Allen, Studies on gastric mucoproteins. The isolation and characterization of the mucoprotein of the water-soluble mucus from pig cardiac gastric mucosa, Biochem. J. 123: 845 (1971).PubMedGoogle Scholar
  4. 4.
    J. Forstner, N. Taichman, V. Kalnins, and G. Forstner, Intestinal goblet cell mucus: isolation and identification by immunofluorescence of a goblet cell glycoprotein, J. Cell. Sci. 12: 585 (1973).PubMedGoogle Scholar
  5. 5.
    I. Jabbal, D. I. C. Kells, G. Forstner, and J. Forstner. Human intestinal goblet cell mucin, Can. J. Biochem. 54: 707 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Marshall, and A. Allen, The isolation and characterization of the high-molecular-weight glycoprotein from pig colonic mucus, Biochem. J. 173: 569 (1978).PubMedGoogle Scholar
  7. 7.
    V. L. N. Murty, F. Downs, and W. Pigman, Rat colonic, mucus glycoprotein, Carb. Res. 6: 139 (1978).Google Scholar
  8. 8.
    B. L. Slomiany, V. Murty, and A. Slomiany, Isolation and characterization of oligosaccharides from rat colonic mucus glycoprotein, J. Biol. Chem. 255: 9719 (1980).PubMedGoogle Scholar
  9. 9.
    B. L. Slomiany, and K. Meyer, Oligosaccharides produced by acetolysis of blood group A (A+H) sulfated glycoproteins from hog gastric mucin, J. Biol. Chem. 248: 2290 (1973).PubMedGoogle Scholar
  10. 10.
    W. Newman, and E. A. Kabat, Immunological studies on blood groups. Structures and immunochemical properties of nine oligosaccharides for β-active blood group substances of horse gastric mucosae, Arch. Biochem. Biophys. 172: 535 (1976).CrossRefGoogle Scholar
  11. 11.
    V. Derevitskaya, N. Arbatsky, and N. Kochetkov, The structure of carbohydrate chains of blood group substance, Eur. J. Biochem. 86: 423 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    M. D. G. Oates, A. Rosbottom, and J. Schrager, Further investigations into the structure of human gastric mucin. Carb. Res. 34: 115 (1974).CrossRefGoogle Scholar
  13. 13.
    D. Carlson, Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins, J. Biol. Chem. 243: 616 (1968).PubMedGoogle Scholar
  14. 14.
    T. Beyer, J. Rearick, J. Paulson, J. P. Prieels, J. E. Sadler, and R. L. Hill, Biosynthesis of mammalian glycoproteins. Glycosylation pathways in the synthesis of the nonreducing terminal sequence, J. Biol. Chem. 254: 12531 (1979).PubMedGoogle Scholar
  15. 15.
    J. F. Forstner, I. Jabbal, R. Qureshi, D. Kells, and G. G. Forstner, The role of disulphide bonds in human intestinal mucin, Biochem. J. 181: 725 (1979).PubMedGoogle Scholar
  16. 16.
    S. J. List, B. P. Findlay, G. G. Forstner, and J. F. Forstner, Enhancement of the viscosity of mucin by serum albumin, Biochem. J. 175: 565 (1978).PubMedGoogle Scholar
  17. 17.
    J. R. Clamp, and M. Gough, Study of the oligosaccharide units from mucus glycoproteins of meconium from normal infants and from cases of cystic fibrosis with meconium ileus, J. Path. 126: 197 (1978).CrossRefGoogle Scholar
  18. 18.
    A. Allen, M. Mantle, and J. Pearson, The structure and properties of mucus glycoproteins, in: “Proceedings of the 8th International Congress on Cystic Fibrosis,” J. M. Sturgess, ed., Imperial Press Ltd, Toronto (1980).Google Scholar
  19. 19.
    J. Bara, A. Paul-Gardias, F. Loisillier, and P. Burtin, Isolation of a sulfated glycopeptide antigen from human gastric tumors, Int. J. Cancer 21: 133 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    D. V. Gold, and F. Miller, A Mucoprotein with colon-specific determinants, Tissue Antigens 11: 362 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Qureshi, G. G. Forstner, and J. F. Forstner, Radioimmunoassay of human intestinal goblet cell mucin, J. Clin. Invest. 64: 1149 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    N. G. Heatley, Mucosubstance as a barrier to diffusion, Gastroent. 37: 313 (1959).Google Scholar
  23. 23.
    J. Machin, Osmotic gradients across snail epidermis. Evidence for a water barrier, Science 183: 759 (1974).PubMedCrossRefGoogle Scholar
  24. 24.
    V. Negus, Mucus, Proc. Roy. Soc. Med. 60: 75 (1967).PubMedGoogle Scholar
  25. 25.
    B. E. Lukie, Studies of mucus permeability, Mod. Prob. Paed. 19: 46 (1977).Google Scholar
  26. 26.
    F. Nimmerfall, and J. Rosenthaler, Significance of the goblet-cell mucin layer, the outermost luminal barrier to passage through the gut wall, Biochem. Biophys. Res. Comm. 94: 960 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Nakamura, K. Shima, T. Kimura, S. Muranishi, and H. Sezaki, Intestinal mucus in the absorption of quinine and water-soluble dyes from the rat small intestine, Chem. Pharm. Bull. 26: 857 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    M. P. Braybrooks, B. W. Barry, and E. T. Abbs, The effect of mucin on the bioavailability of tetracycline from the gastrointestinal tract, in vivo, in vitro correlations, J. Pharm. Pharmacol. Commun. 27: 508 (1975).Google Scholar
  29. 29.
    I. W. Kellaway, and C. Marriot, The influence of mucin on the bioavailability of tetracycline, J. Pharm. Pharmacol. Commun. 27: 281 (1975).Google Scholar
  30. 30.
    E. G. Lovering, and D. B. Black, Drug permeation through membranes III: Effect of pH and various substances on permeation of phenylbutazone through everted rat intestine and poly-dimethyl-siloxane, J. Pharmac. Sci. 63: 671 (1974).CrossRefGoogle Scholar
  31. 31.
    J. F. Forstner, and G. G. Forstner, Calcium binding to intestinal goblet cell mucin, Biochim. Biophys. Acta 386: 283 (1975).PubMedGoogle Scholar
  32. 32.
    J. F. Forstner, and G. G. Forstner, Effects of calcium on intestinal mucin. Implications for cystic fibrosis, Pediat. Res. 10: 609 (1976).PubMedCrossRefGoogle Scholar
  33. 33.
    J. R. Coleman, and L. B. Young, Metal binding by intestinal mucus, in: “Scanning Electron Microscopy II”, A. M. F. O’Hare, ed., S. E. M. Inc., Ill. (1979).Google Scholar
  34. 34.
    A. Albert, and C. W. Rees, Avidity of the tetracyclines for the cations of metals, Nature 177: 433 (1956).PubMedCrossRefGoogle Scholar
  35. 35.
    P. W. Kent, and A. Allen, The biosynthesis of intestinal mucins, Biochem. J. 106: 645 (1968).PubMedGoogle Scholar
  36. 36.
    B. E. Lukie, and G. G. Forstner, Synthesis of intestinal glycoproteins. Inhibition of (I– 14C) glucosamine incorporation by sodium salicylate in vitro, Biochim. Biophys. Acta 283: 380 (1972).CrossRefGoogle Scholar
  37. 37.
    B. E. Lukie, and G. G. Forstner. Synthesis of intestinal glycoproteins. Inhibition of (I–14C) glucosamine incorporation by phenylbutazone in vitro, Biochim. Biophys. Acta 338: 345 (1974).CrossRefGoogle Scholar
  38. 38.
    R. Menguy, and A. E. Thompson, Regulation of secretion of mucus from the gastric antrum, Ann. N.Y. Acad. Sci. 140: 797 (1967).PubMedCrossRefGoogle Scholar
  39. 39.
    W. Domschke, S. Domschke, M, Classen, and L. Demling, Some properties of mucus in patients with gastric ulcer. Effects of treatment with carbonoxolone. Scand. J. Gastroent. 7: 647 (1972).PubMedCrossRefGoogle Scholar
  40. 40.
    J. S. Shillingford, W. E. Lindup, and D. V. Parke, The effects of carbonoxolone on the biosynthesis of gastric glycoproteins in the rat and ferret, Biochem. Soc. Trans. 2: 1104 (1974).Google Scholar
  41. 41.
    J. P. Bolton, D. Palmer, and M. Cohen, Stimulation of mucus and non parietal cell secretion by E2 prostaglandins, Am. J. Dig. Dis. 23: 359 (1978).PubMedCrossRefGoogle Scholar
  42. 42.
    A. Robert, Antisecretory antiulcer cytoprotective and diarrheogenic properties of the prostaglandins, Adv. Prostag. Thrombox. Res. 2: 507 (1976).Google Scholar
  43. 43.
    W. Domschke, S. Domschke, J. Hagel, L. Demling, and D. N. Croft, Gastric epithelial cell turnover, mucus production and healing of gastric ulcers with carbonoxolone, Gut 18: 817 (1977).PubMedCrossRefGoogle Scholar
  44. 44.
    J. E. Nozamis, and A. Robert, Gastric mucus may mediate the cytoprotective effect of prostaglandins, Gastroent. 78: 1228 (1980).Google Scholar
  45. 45.
    M. Guslandi, M. Cambielli, L. Bierti, and A. Tittobello, Relapse of duodenal ulceration after cimetidine treatment, Brit. Med. J. 1: 718 (1978). (Letter).PubMedCrossRefGoogle Scholar
  46. 46.
    R. S. Cathcart, C. T. Fitts, J. McAlhany, and S. S. Spicer, Histochemical changes in gastric mucosubstances with acute and chronic ulcer disease, Surgery 180: 1 (1974).Google Scholar
  47. 47.
    N. B. Roberts, and W. H. Taylor, The inactivation by carbon-oxylone of individual human pepsinogens and pepsins, Clin. Sci. Mol. Med. 45: 213 (1973).PubMedGoogle Scholar
  48. 48.
    Y. Mikuni-Takagaki, and K. Hotta, Characterization of peptic inhibitory activity associated with sulphated glycoproteins isolated from gastric mucosa, Biochim. Biophys. Acta 584: 288, (1979).CrossRefGoogle Scholar
  49. 49.
    M. I. Filipe, and C. Fenger, Histochemical characteristics of mucins in the small intestine. A comparative study of normal mucosa, benign epithelial tumours and carcinoma, Histochem. J. 11: 277 (1979).PubMedCrossRefGoogle Scholar
  50. 50.
    Y. S. Kim, A. Bella, Jr., J. S. Whitehead, R. Isaacs, and L. Remer, Studies on the binding of amylopectin sulfate with gastric mucin, Gastroent. 69: 138 (1975).Google Scholar
  51. 51.
    M. N. Guentzel, L. H. Field, E. R. Eubanks, and L. J. Barry, Use of fluorescent antibody in studies of immunity to cholera, Inf. Immun. 15: 539 (1977).Google Scholar
  52. 52.
    H. U. Bertschinger, J. W. Moon, and S. C. Whipp, Association of E. coli with intestinal epithelium, Inf. Immun. 5: 595 (1972).Google Scholar
  53. 53.
    R. C. Williams, and R. J. Gibbons, Inhibition of streptococcal attachment to receptors on human buccal epithelial cells by antigenically similar salivary glycoproteins, Inf. Immun. 11: 711 (1975).Google Scholar
  54. 54.
    D. R. Strombeck, and D. Harrold, Binding of cholera toxin to mucins and inhibition by gastric mucin. Inf. Immun. 10: 1266 (1974).Google Scholar
  55. 55.
    R. di Girolamo, J. Liston, and J, Matches, Ionic binding: the mechanism of viral uptake by shellfish mucus, Appl. Environ. Microbiol. 33: 19 (1977).PubMedGoogle Scholar
  56. 56.
    D. C. Savage, Factors involved in colonization of the gut epithelial surface, Am. J. Clin. Nutr. 31: 131 (1978).Google Scholar
  57. 57.
    L. E. Hoskins, and E. T. Boulding, Degradation of blood group antigens in human colon ecosystems, J. Clin. Invest. 57: 63 (1976).PubMedCrossRefGoogle Scholar
  58. 58.
    L. E. Hoskins, and E. T. Boulding, Degradation of blood group antigens in human colon ecosystems. J. Clin. Invest. 57: 74 (1976).PubMedCrossRefGoogle Scholar
  59. 59.
    R. Winsnes, T. Midtveldt, and A. Trippestad, Rat intestinal glycoprotein lowering bactericidal activity of serum on 32P-labelled E. Coli, Acta Path. Microbiol. Scand. Sect. C, 84: 77 (1976).Google Scholar
  60. 60.
    H. R. P. Miller, and Y. Nawa, Immune regulation of intestinal goblet cell differentiation, Nouv. Rev. Fr. Hematol. 21: 31 (1979).PubMedGoogle Scholar
  61. 61.
    H. R. P. Miller, and Y. Nawa, Nippostrongylus brasiliensis: intestinal goblet cell response in adoptively immunized rats, Exper. Parasit. 47: 81 (1979).CrossRefGoogle Scholar
  62. 62.
    W. A. Walker, and M. Wu, Stimulation by immune complexes of mucus release from goblet cell of the rat small intestine, Science 97: 370 (1977).CrossRefGoogle Scholar
  63. 63.
    A. D. Befus, N. Johnston, and J. Bienemstock, Nippostrongylus brasielensis: mast cells and histamine levels in tissues of infected and normal rats. Exper. Parasit. 48: 1 (1979).CrossRefGoogle Scholar
  64. 64.
    J. Forstner, B. Maxwell, and N. Roomi, Intestinal secretions of mucin in chronically reserpinized rats. Am. J. Physiol. (In press).Google Scholar
  65. 65.
    B. J. Underdown, I. C. Roberts-Thomson, R. F. Anders, and G. F. Mitchell, Giardiasis in mice: studies on the characteristics of chronic infection in C3H/He mice, J. Immunol. 126: 669 (1981).PubMedGoogle Scholar
  66. 66.
    S. Coles, Regulation of the secretory cycles of mucous and serous cells in the human bronchial gland, in: “Mucus in Health and Disease,” M. Elstein and D.V. Parke, eds., Plenum Press, London (1977).Google Scholar
  67. 67.
    J. T. Gallagher, P. W. Kent, R. Phipps, and P. Richardson, Influence of pilocarpine and ammonia vapour on the secretion and structure of cat tracheal mucins, in: “Mucus in Health and Disease,” M. Elstein and D.V. Parke, eds., Plenum Press, London (1977).Google Scholar
  68. 68.
    R. D. Specian, and M. R. Neutra, (personal communication).Google Scholar
  69. 69.
    D. L. Freed, and C. H. Buckley, Mucotractive effect of lectin, Lancet 1: 585 (1978).PubMedCrossRefGoogle Scholar
  70. 70.
    A. M. Lake, K. J. Block, M. R. Neutra, and W. A, Walker, Intestinal goblet cell mucus release, J. Immunol. 112: 834 (1979).Google Scholar
  71. 71.
    G. Forstner, M. Shih, and B. Lukie, Cyclic AMP and intestinal glycoprotein synthesis: the effect of β-adrenergic agents, theophylline, and dibutyryl cyclic AMP, Can. J. Physiol. Pharmacol. 51: 122 (1973).PubMedCrossRefGoogle Scholar
  72. 72.
    H. L. Elliot, C. C. J. Carpenter, R. B. Sack, and J. H. Yardley., Small bowel morphology in experimental canine cholera, A light and electron microscopic study, Lab. Invest. 22: 112 (1970).Google Scholar
  73. 73.
    H. W. Moon, S. C. Whipp, and A. L, Baetz, Comparative effects of enterotoxin from Escherichia coli and Vibrio cholerae on rabbit and swine small intestine, Lab. Invest. 25: 133 (1971).PubMedGoogle Scholar
  74. 74.
    J. H. Yardley, T. M. Bayless, E. H. Leubbers, C. H. Holland, and T. R. Hendrix, Goblet cell mucus in the small intestine. Findings after net fluid production due to cholera toxin and hypertonic solutions, Johns Hopkins Med. J. 130–131: 1 (1972).Google Scholar
  75. 75.
    S. E. Steinberg, J. G. Banwell, J. H. Yardley, G. T. Keusch, and T. R. Hendrix, Comparison of secretory and histological effects of Shigella and cholera enterotoxins in rabbit jejunum, Gastroent. 68: 309 (1975).Google Scholar
  76. 76.
    H. P. Sherr, B. R. Mertens, and R. Broock, Cholera toxin-induced glycoprotein secretion in rabbit small intestine, Gastroent. 77: 18 (1979).Google Scholar
  77. 77.
    R. J. Gibbons, and I. Dankers, Lectin-like constituents of foods which react with components of serum, saliva and streptococcus mutans, Appl. Environ. Bacteriol. (In press).Google Scholar
  78. 78.
    J. F. Forstner, N. W. Roomi, R. E. F. Fahim, and G. G. Forstner, Cholera toxin stimulates secretion of immunoreactive mucin, Am. J. Physiol. 3: G10 (1981).Google Scholar
  79. 79.
    R. D. Specian, and M. R. Neutra, Mucous granule transport and secretion: effects of colchicine and cytochalasin B, J. Cell Biol. 87: 278 (1980).Google Scholar
  80. 80.
    J. R. Martinez, E. Adelstein, D. Quissell, and G. Barbero, The chronically reserpinized rat as a possible model for cystic fibrosis. 1. Submaxillary gland morphology and ultrastructure, Pediat. Res. 9: 463 (1975).PubMedCrossRefGoogle Scholar
  81. 81.
    T. P. Mawhinney, M. S. Feather, I. Q. Martinez, and G. J. Barbero, The chronically reserpinized rat as an animal model for cystic fibrosis: acute effect of isoproterenol and pilocarpine upon pulmonary lavage fluid, Pediat. Res. 13: 760 (1979).PubMedCrossRefGoogle Scholar
  82. 82.
    M. E. Setser, S. S. Spicer, J. A. V. Simpson, M. Adamson, and J. R. Martinez, The effects of reserpine on the ultra-structure and secondary response of rat exocrine pancreas, Exper. Mol. Pathol. 31: 413 (1979).CrossRefGoogle Scholar
  83. 83.
    T. P. Mawhinney, J. R. Martinez, M. S. Feather and G. J. Barbero, Effects of kinin, peptides and prostaglandins on glycoprotein release by the perfused trachea of control and reserpine treated rats, presented at the 21st annual meeting of the Cystic Fibrosis Club, San Antonio, Texas, April 29, 1980 (abstract).Google Scholar
  84. 84.
    R. Frates, J. Last and T. Kaizu, Mucus glycoproteins secreted by cultured airway tissue from human subjects with and without cystic fibrosis, presented at the 20th annual meeting of the Cystic Fibrosis Club, Atlanta, Georgia, May 1, 1979 (abstract).Google Scholar
  85. 85.
    M. R. Neutra, R. J. Grand, and J. S. Trier, Glycoprotein synthesis, transport and secretion by epithelial cells of human rectal mucosa, Lab. Invest. 36: 535 (1977).PubMedGoogle Scholar
  86. 86.
    S. M. Morrissey, and M. C. Tymvios, Acid mucins in human intestinal goblet cells, J. Path. 126: 197 (1978).PubMedCrossRefGoogle Scholar
  87. 87.
    Z. Dische, P. Di Sant’Agnese, C. Pallavicini, and J. Youlos, Composition of mucoprotein fractions from duodenal fluid of patients with cystic fibrosis of the pancreas and from controls, Paed. 24: 74 (1959).Google Scholar
  88. 88.
    Z. Dische, Reciprocal relation between fucose and sialic acid in mammalian glycoproteins, Ann. N.Y. Acad. Sci. 106: 259 (1963).PubMedCrossRefGoogle Scholar
  89. 89.
    M. I. Filipe, Value of histochemical reactions from mucosubstances in the diagnosis of certain pathological conditions of the colon and rectum, Gut 10: 577 (1969).PubMedCrossRefGoogle Scholar
  90. 90.
    M. I. Filipe, and A. C. Branfoot, Abnormal patterns of mucus secretion in apparently normal mucosa of large intestine with carcinoma, Cancer 34: 282 (1974).PubMedCrossRefGoogle Scholar
  91. 91.
    M. I. Filipe, Mucous secretion in rat colonic mucosa during carcinogenesis induced by dimethylhydrazine, Br. J. Cancer 32: 60 (1975).PubMedCrossRefGoogle Scholar
  92. 92.
    D. V. Gold, and F. Miller, Comparison of human colonic mucoprotein antigen from normal and neoplastic mucosa, Cancer Res. 38: 3204 (1978).PubMedGoogle Scholar
  93. 93.
    C. M. Rogers, K. B. Cooke, and M. I. Filipe, Sialic acids of human large bowel mucosa: 0-acylated variants in normal and malignant states, Gut 19: 587 (1978).PubMedCrossRefGoogle Scholar
  94. 94.
    C. F. Culling, P. E. Reid, J. Worth, and W. L. Dunn, A new histochemical technique of use in the interpretation and diagnosis of adenocarcinoma and villous lesions in the large intestine, J. Clin. Path. 30: 1056 (1977).PubMedCrossRefGoogle Scholar
  95. 95.
    P. A. Dawson, J. Patel, and M. I. Filipe, Variations in sialomucins in the mucosa of the large intestine in malignancy: a quantimet and statistical analysis, Histochem. J. 10: 559 (1978).PubMedCrossRefGoogle Scholar
  96. 96.
    Y. S. Kim, and R. Isaacs, Glycoprotein metabolism in inflammatory and neoplastic diseases of the human colon, Cancer. Res. 35: 2092 (1975).PubMedGoogle Scholar
  97. 97.
    I. Davidson, S. Kovarik, and L. Y. Ni, Isoantigens A, B and H in benign and malignant lesions of the cervix, Arch. Pathol. 87: 306 (1969).Google Scholar
  98. 98.
    T. A. O’Gorman, and J. T. LaMont, Glycoprotein synthesis and secretion in human colon cancers and normal colonic mucosa Cancer Res. 38: 2784 (1978).PubMedGoogle Scholar
  99. 99.
    P. A. Dawson, and M. I. Filipe, A comparison of (3H) galactose and (3H) fucose uptake with the morphological and histochemical changes observed in mucous secretion in chemically induced rat colonic carcinoma, Histochem. J. 12: 23 (1980).PubMedCrossRefGoogle Scholar
  100. 100.
    I. P. Hakkinen, FSA-foetal sulphoglycoprotein antigens associated with gastric cancer, Transplant. Rev. 20: 61 (1974).PubMedGoogle Scholar
  101. 101.
    H. Munakata, and Z. Yosizawa, Isolation and characterization of a sulfated glycoprotein from a transplantable colorectal adenocarcinoma of rat, Biochim. Biophys. Acta 623: 412 (1980).PubMedGoogle Scholar
  102. 102.
    D. M. Goldenberg, C. A. Pegram, and J. I. Vazquez, Identification of a colon specific antigen in normal and neoplastic tumor, J. Immunol. 114: 1008 (1975).PubMedGoogle Scholar
  103. 103.
    D. V. Gold, and F. Miller, Chemical and immunological differences between normal and tumoral colonic mucoproteins, Nature 255: 85 (1975).PubMedCrossRefGoogle Scholar
  104. 104.
    W. Rapp, M. Windisch, P. Peschke, and W. Wurster, Purification of a human intestinal goblet cell antigen (GoA). Its immunological demonstration in the intestine and mucus producing gastrointestinal adenocarcinomas, Virchows Arch. (Pathol. Anat.) 382: 167 (1979).CrossRefGoogle Scholar
  105. 105.
    J. Bara, and P. Burtin, Mucus-associated gastrointestinal antigens in transitional mucosa adjacent to human colonic adenocarcinomas: their “fetal type” association, Eur. J. Cancer 16: 1303 (1980).PubMedGoogle Scholar
  106. 106.
    M. I. Filipe, and I. M. P. Dawson, The diagnostic value of mucosubstances in rectal biopsies from patients with ulcerative colitis and Crohn’s disease, Gut 11: 229 (1970).PubMedCrossRefGoogle Scholar
  107. 107.
    C. F. Culling, P. A. Reid, and W, L. Dunn, A histological comparison of 0-acylated sialic acids of the epithelial mucins in ulcerative colitis; Crohn’s disease and normal controls, J. Clin. Path. 32: 1272 (1979).PubMedCrossRefGoogle Scholar
  108. 108.
    R. P. MacDermott, R. M. Donaldson, and J. S. Trier, Glycoprotein synthesis and secretion by mucosal biopsies of rabbit colon and human rectum, J. Clin. Invest. 54: 545 (1974).PubMedCrossRefGoogle Scholar
  109. 109.
    G. Fraser, and J. R. Clamp, Changes in human colonic mucus in ulcerative colitis, Gut 16: 832 (1975).PubMedGoogle Scholar
  110. 110.
    S. P. Lee, J. T. LaMont, and M. Carey, The prevention of cholesterol gallstones with aspirin, Gastroent. 78: 1205 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • G. Forstner
    • 1
  • A. Wesley
    • 1
  • J. Forstner
    • 1
  1. 1.Kinsmen Cystic Fibrosis Research Centre, Dept. of Paediatrics and BiochemistryThe Hospital for Sick Children and the University of TorontoTorontoCanada

Personalised recommendations