Biosynthesis of Mucus Glycoproteins

  • Harry Schachter
  • David Williams
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 144)


Mucus in higher organisms is usually defined as the viscous fluid lining the epithelium of the gastro-intestinal, respiratory and genito-urinary tracts. Mucus is a complex mixture containing large glycoproteins (mucins), water, electrolytes, sloughed epithelial cells, enzymes and various other materials, including bacteria and bacterial products depending on the source and location of the mucus. This discussion will be limited to a survey of the biosynthesis of the carbohydrate portion of mucins, the major components of mucus. Mucins are large glycoproteins (molecular weight is usually over 1 × 106> ) containing from 50 to 80% or more by weight of carbohydrate. As will be discussed in more detail below, the carbohydrate is linked to the polypeptide by an O-glycosidic bond between GalNAc and Ser or Thr. Mucins are polydisperse with respect to molecular size and oligosaccharide sequences and chain lengths. Thus structural information on mucin oligosaccharides must be obtained by cleaving the Ser(Thr)-GalNAc bond, usually by alkali-catalyzed β-elimination, and purifying individual oligosaccharides. By analogy, our discussion of biosynthesis will deal with the assembly of a single oligosaccharide at a time.


Sialic Acid Blood Group Submaxillary Gland Sendai Virus Gastric Mucin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Neutra and C.P. Leblond. Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3, J. Cell Biol. 30: 119–136 (1966).PubMedCrossRefGoogle Scholar
  2. 2.
    G. Bennett, C.P. Leblond and A. Haddad. Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by radioautography after labeled fucose injection into rats. J. Cell Biol. 60: 258–284 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    B. Mayrick and L. Reid. In vitro incorporation of 3H-threonine and 3H-glucose by the mucous and serous cells of the human bronchial submucosal gland. J. Cell Biol. 67: 320–344 (1975).CrossRefGoogle Scholar
  4. 4.
    M.F. Kramer, J.J. Geuze and G.J.A.M. Strous. Site of synthesis, intracellular transport and secretion of glycoprotein in exocrine cells, in “Respiratory Tract Mucus”, Ciba Foundation Symposium 54, pp. 25–51, Elsevier, Amsterdam (1978).Google Scholar
  5. 5.
    N.B. Berg and B.P. Austin. Intracellular transport of sulfated macromolecules in parotid acinar cells. Cell Tiss. Res. 165: 215–225 (1976).CrossRefGoogle Scholar
  6. 6.
    J.F. Forstner. Intestinal mucins in health and disease, Digestion 17: 234–263 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    J.J. Geuze and J.W. Slot. Synthesis and secretion of glycoproteins in rat bulbourethral (Cowper’s) gland. 1. The effect of copulation on the glandular content and on the incorporation of galactose and leucine. Biol. Reprod. 15: 118–125 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    A.R. Zinn, J.J. Plantner and D.M.Carlson. Nature of linkages between protein core and oligosaccharides, in: “The Glyco-conjugates”, Vol. 1, M.I. Horowitz and W. Pigman, eds., pp. 69–85, Academic Press, New York (1977).Google Scholar
  9. 9.
    E.F. Hounsell, M. Fukuda, M.E. Powell, T. Feizi and S. Hakomori. A new O-glycosidically linked tri-hexosamine core structure in sheep gastric mucin: a preliminary note. Biochem. Biophys. Res. Communs. 92: 1143–1150 (1980).CrossRefGoogle Scholar
  10. 10.
    H.D.Hill, Jr., J.A. Reynolds, and R.L. Hill. Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin. J. Biol. Chem. 252: 3791–3798 (1977).PubMedGoogle Scholar
  11. 11.
    D.M. Carlson. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J. Biol. Chem. 243: 616–626 (1968).PubMedGoogle Scholar
  12. 12.
    C.G. Lombart and R.J. Winzler. Isolation and characterization of oligosaccharides from canine submaxillary mucin. Eur. J. Biochem. 49: 77–86 (1974).PubMedCrossRefGoogle Scholar
  13. 13.
    M.S.Reddy, R.H. Shah and O.P. Bahl. Structures of the carbohydrate units of mucins from normal and fibrocystic human submaxillary secretions. Proc. Ann. Meeting Soc. Complex Carbohydrates, Toronto, abstract No. 40 (1979).Google Scholar
  14. 14.
    V.A. Derevitskaya, N.P. Arbatsky and N.K. Kochetkov. The structure of carbohydrate chains of blood-group substance. Isolation and elucidation of the structure of higher oligosaccharides from blood-group substance H. Eur. J. Biochem. 86: 423–437 (1978)PubMedCrossRefGoogle Scholar
  15. 15.
    W. Newman and E.A. Kabat. Immunochemical studies on blood groups. Structures and immunochemical properties of nine oligosaccharides from B-active and non-B-active blood group substances of horse gastric mucosae. Arch. Biochem. Biophys. 172: 535–550 (1976).CrossRefGoogle Scholar
  16. 16.
    M.D.G.Oates, A.C. Rosbottom and J. Schrager. Further investigations into the structure of human gastric mucin: the structural configuration of the oligosaccharide chains. Carbohyd. Res. 34: 115–137 (1974).CrossRefGoogle Scholar
  17. 17.
    L. Rovis, B. Anderson, E.A. Kabat, F. Gruezo and J. Liao. Structures of oligosaccharides produced by base-borohydride degradation of human ovarian cyst blood group H, Leb and Lea active glycoproteins. Biochemistry 12: 5340–5354 (1973).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Lamblin, M. Lhermitte, A. Boersma, P. Roussel and V. Reinhold. Oligosaccharides of human bronchial glycoproteins. Neutral di- and tri-saccharides isolated from a patient suffering from chronic bronchitis. J. Biol. Chem. 255: 4595–4598 (1980).PubMedGoogle Scholar
  19. 19.
    H.E. Carlsson, G. Sundblad, A. Hammarström and J. Lonngren. Structure of some oligosaccharides derived from rat intestinal glycoproteins. Carbohyd. Res. 64: 181–188 (1978).CrossRefGoogle Scholar
  20. 20.
    B.L.Slomiany, V.L.N. Murty and A. Slomiany. Isolation and characterization of oligosaccharides from rat colonic mucus glycoprotein. J. Biol. Chem. 255: 9719–9723 (1980).PubMedGoogle Scholar
  21. 21.
    A. Slomiany and B.L. Slomiany. Structures of the acidic oligosaccharides isolated from rat sublingual glycoprotein. J. Biol. Chem. 253: 7301–7306 (1978).PubMedGoogle Scholar
  22. 22.
    A. Herp, A.M. Wu and J. Moschera. Current concepts of the structure and nature of mammalian salivary mucous glycoproteins. Mol. Cell Biochem. 23: 27–43 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    E.J.McGuire and S. Roseman. Enzymatic synthesis of the protein-hexosamine linkage in sheep submaxillary mucin J. Biol. Chem. 242: 3745–3747 (1967).PubMedGoogle Scholar
  24. 24.
    A. Hagopian, F.C. Westall, J.S. Whitehead and E.H. Eylar. Glycosylation of the A1 protein from myelin by a polypeptide N-acetylgalactosaminyltransferase. Identification of the receptor sequence. J. Biol. Chem. 246: 2519–2523, (1971).PubMedGoogle Scholar
  25. 25.
    H. Schachter. Glycoprotein Biosynthesis, in: “The Glyco-conjugates”, Vol. II, M.I. Horowitz and W. Pigman, eds., pp. 87–181, Academic Press, New York (1978).Google Scholar
  26. 26.
    H.D.Hill, Jr., M. Schwyzer, H.M. Steinman and R.L. Hill. Ovine submaxillary mucin. Primary structure and peptide substrates of UDP-N-acetylgalactosamine: mucin transferase. J. Biol. Chem. 252: 3799–3804 (1977).PubMedGoogle Scholar
  27. 27.
    J.D.Young, D. Tsuchiya, D.E. Sandlin and M.J. Holroyde. Enzymic O-glycosylation of synthetic peptides from sequences in basic myelin protein. Biochemistry 18: 4444–4448 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    D.K. Struck and W.J. Lennarz. The function of saccharide-lipids in synthesis of glycoproteins, in: “The Biochemistry of Glycoproteins and Proteoglycans”, W.J. Lennarz, ed., pp. 35–83, Plenum Press, New York (1980).CrossRefGoogle Scholar
  29. 29.
    H. Schachter and S. Roseman. Mammalian Glycosyltransferases. Their role in the synthesis and function of complex carbohydrates and glycolipids, in: “The Biochemistry of Glycoproteins and Proteoglycans”, W.J. Lennarz, ed., pp. 85– 160, Plenum Press, New York (1980).CrossRefGoogle Scholar
  30. 30.
    J.A. Hanover, W.J. Lennarz and J.D. Young. Synthesis of N-and O-linked glycopeptides in oviduct membrane preparations. J. Biol. Chem. 255: 6713–6716 (1980).PubMedGoogle Scholar
  31. 31.
    P. Babczinski. Evidence against the participation of lipid intermediates in the in vitro biosynthesis of serine-(threonine)-N-acetyl-D-galactosamine linkages in submaxillary mucin. FEBS Letters 117: 207–211 (1980).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Babczinski and W. Tanner. Involvement of dolichol monophosphate in the formation of specific mannosyl linkages in yeast glycoproteins. Biochem. Biophys. Res. Communs. 54: 1119–1124 (1973).CrossRefGoogle Scholar
  33. 33.
    L. Lehle and W. Tanner. Biosynthesis and characterization of large dolichyl diphosphate-linked oligosaccharides in saccharomyces cervisiae, Biochim. Biophy. Acta 539: 218– 229 (1978).CrossRefGoogle Scholar
  34. 34.
    Y.S. Kim, J. Perdomo and J. Nordberg. Glycoprotein biosynthesis in small intestinal mucosa. I. A study of glycosyl-transferases in microsomal subfractions. J. Biol. Chem. 246: 5466–5476 (1971).PubMedGoogle Scholar
  35. 35.
    G.K.W. Ko and E. Raghupathy. Glycoprotein biosynthesis in the developing rat brain. II. Microsomal galactosaminyltransferase utilizing endogenous and exogenous protein acceptors. Biochimi. Biophy. Acta 264: 129–143 (1972).CrossRefGoogle Scholar
  36. 36.
    A. Hagopian, H.B. Bosmann and E.H. Eylar. Glycoprotein biosynthesis: the localization of polypeptidyl: N-acetylgalactosaminyl, Collagen: glycosyl, and Glycoprotein: galactosyl Transferase in HeLa cell membrane fractions. Arch. Biochem. Biophys. 128: 387–396 (1968).PubMedCrossRefGoogle Scholar
  37. 37.
    G.JA.M. Strous. Initial glycosylation of proteins with acetyl-galactosaminylserine linkages. Proc. Nat. Acad. Sci. USA 76. 2694–2698 (1979).PubMedCrossRefGoogle Scholar
  38. 38.
    H. Schachter, E.J. McGuire and S. Roseman. Sialic acids. XIII. A uridine diphosphate D-galactose: mucin galactosyltransferase from porcine submaxillary gland. J. Biol. Chem. 246: 5321–5328 (1971).Google Scholar
  39. 39.
    D.H. Van den Eijnden, R.A. Barneveld and W.E.C.M. Schiphorst. Structure of the disaccharide chain of galactosyl-N-acetylgalactosaminyl-protein synthesized in vitro. Eur. J. Biochem. 95: 629–637 (1979).PubMedCrossRefGoogle Scholar
  40. 40.
    D.M. Carlson, J. David and W.J. Rutter. Galactosyltransferase activities in pancreas, liver and gut of the developing rat. Arch. Biochem. Biophys. 157: 605–612 (1973).PubMedCrossRefGoogle Scholar
  41. 41.
    W.T. Shier and G.J. Roloson. Preparation and galactosyltransferase acceptor activities of derivatives of anti-freeze glycoproteins of an antarctic fish. Can. J. Biochem. 55: 886–893 (1977).PubMedCrossRefGoogle Scholar
  42. 42.
    G.N. Andersson and L.C. Eriksson. Studies on the latency of UDP-galactose: asialo-mucin galactosyltransferase activity in microsomal and Golgi subfractions from rat liver. Biochim. Biophys. Acta 600: 571–576 (1980).PubMedCrossRefGoogle Scholar
  43. 43.
    E.J. McGuire. Biosynthesis of submaxillary mucins, in: “Blood and Tissue Antigens”, D. Aminoff, ed., pp. 461–478, Academic Press, New York (1970).Google Scholar
  44. 44.
    D.B. Thomas and R. J. Winzler. Structural studies on human erythrocyte glycoproteins. Alkali-liable oligosaccharides. J. Biol. Chem. 244: 5943–5946 (1969).PubMedGoogle Scholar
  45. 45.
    M.F. Kramer and J.J. Geuze. Comparison of various methods to localize a source of radioactivity in ultrastructural autoradiographs. The site of (3H)-galactose incorporation in surface mucous cells of the rat stomach. J. Histochem. Cytochem. 28: 381–387 (1980).PubMedCrossRefGoogle Scholar
  46. 46.
    D.M. Carlson, E.J. McGuire, G.W. Jourdian and S. Roseman. The Sialic Acids. XVI. Isolation of a mucin sialytransferase from sheep submaxillary gland. J. Biol. Chem. 248: 5763–5773 (1973).PubMedGoogle Scholar
  47. 47.
    M. Schwyzer and R.L. Hill. Porcine A blood group-specific N-acetylgalactosaminyltransferase I. Purification from porcine submaxillary glands. J. Biol. Chem. 252: 2338–2345 (1977).PubMedGoogle Scholar
  48. 48.
    M. Schwyzer and R.L. Hill. Porcine A blood group-specific N-acetylgalactosaminyltransferase II. Enzymatic properties. J. Biol. Chem. 252: 2346–2355 (1977).PubMedGoogle Scholar
  49. 49.
    J.E. Sadler, J.I. Rearick, J.C. Paulson and R.L. Hill. Purification to homogeneity of a β-galactoside α2–3 sialyltransferase and partial purification of an α-N-acetylgala-ctosaminide α2-6 sialyltransferase from porcine submaxillary glands. J. Biol. Chem. 254: 4434–4442 (1979).PubMedGoogle Scholar
  50. 50.
    J.E. Sadler, J.I. Rearick and R.L. Hill. Purification to homogeneity and enzymatic characterization of an α-N-acetyl-galactosaminide α2–6 sialyltransferase from porcine submaxillary glands. J. Biol. Chem. 254: 5934–5941 (1979).PubMedGoogle Scholar
  51. 51.
    T.A. Beyer, J.E. Sadler and R.L. Hill. Purification to homogeneity of the H blood group β-galactoside α1–2 fucosyltransferase from porcine submaxillary gland. J. Biol. Chem. 255: 5364–5372 (1980).PubMedGoogle Scholar
  52. 52.
    T.A. Beyer and R.L. Hill. Enzymic properties of the β galactoside α 1–2 fucosyltransferase from porcine submaxillary gland. J. Biol. Chem. 255: 5373–5379 (1980).PubMedGoogle Scholar
  53. 53.
    T.A. Beyer, J.I. Rearick, J.C. Paulson, J-P. Prieels, J.E. Sadler and R.L. Hill. Biosynthesis of mammalian glycoproteins. Glycosylation pathways in the synthesis of the nonreducing terminal sequences. J. Biol. Chem. 254: 12531–12541 (1979).PubMedGoogle Scholar
  54. 54.
    W.M. Watkins. Biochemistry and genetics of the ABO, Lewis and P blood group systems, in: “Advances in Human Genetics”, Vol. 10, H. Harris and K. Hirschhorn, eds., pp. 1–136, 379– 385, Plenum Publishing Corp., New York and London (1980).Google Scholar
  55. 55.
    E. Wood, E.F. Hounsell, J. Langhorne and T. Feizi. Sheep gastric mucins as a source of blood group-I and -i antigens. Biochem. J. 187: 711–718 (1980).PubMedGoogle Scholar
  56. 56.
    F. Maisonrouge-McAuliffe and E.A. Kabat. Immunochemical studies on blood groups. Structures and immunochemical properties of oligosaccharides from two fractions of blood group substance from human ovarian cyst fluid differing in B, I and i activities and reactivity toward Concanavalin A. Arch. Biochem. Biophys. 175: 90–113 (1976).CrossRefGoogle Scholar
  57. 57.
    J.I. Rearick, J.E. Sadler, J.C. Paulson and R.L. Hill. Enzymatic characterization of β-D-galactoside α2–3 sialyltransferase from porcine submaxillary gland. J. Biol. Chem. 254: 4444–4451 (1979).PubMedGoogle Scholar
  58. 58.
    M.A.K. Markwell and J.C. Paulson. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. Proc. Nat. Acad. Sci. USA 77: 5693–5697 (1980).PubMedCrossRefGoogle Scholar
  59. 59.
    D. Williams and H. Schachter. Mucin synthesis. I. Detection in canine submaxillary glands of an N-acetylglucosaminyl-transferase which acts on mucin substrates. J. Biol. Chem. 255: 11247–11252 (1980).PubMedGoogle Scholar
  60. 60.
    D. Williams, G. Longmore, K.L. Matta and H. Schachter. Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary gland UDP-GlcNAc:Ga1β1-3Ga1NAc (G1cNAc→Ga1NAc) β6-N-acetylglucosa-minyltransferase. J. Biol. Chem. 255: 11253–11261 (1980).PubMedGoogle Scholar
  61. 61.
    A.M. Wu, A. Slomiany, A. Herp and B.L. Slomiany. Structural studies on the carbohydrate units of armadillo submandibular glycoprotein. Biochim. Biophys. Acta 578: 297–304 (1979).PubMedGoogle Scholar
  62. 62.
    D. Ziderman, S. Gompertz, Z.G. Smith and W.M. Watkins. Glycosyltransferases in mammalian gastric mucosal linings. Biochem. Biophys. Res. Communs. 29: 56–61 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Harry Schachter
    • 1
  • David Williams
    • 1
  1. 1.Research Institute, Hospital for Sick Children, and Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations