Skip to main content
  • 109 Accesses

Abstract

Ionic changes in limited intra- and extracellular spaces are the consequence of the generation of every biopotential. A wide range of techniques has been used in recent years to show that normal neuronal activity causes K+ to accumulate in the narrow clefts separating the cellular elements. However, it was not until the K+ — selective microelectrodes with liquid ion exchanger — Corning code 477317 had been developed by J.L. Walker in 1971 that it has been possible to measure the dynamic changes of K+ in the vicinity of active neurones and fibres. This development brought a new surge of interest in the functional significance of the transient K+ accumulation in the nervous system. The two main questions at that time were:

  1. 1)

    What changes in [K+]e occur during neuronal activity?

  2. 2)

    How might these changes of [K+]e affect the functioning of the nervous system?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, J.T., and Bridger, J.E., 1961, Neuron size and neuron population density in the lumbosacral region of the cat’s spinal cord, J. Ana., 95:38.

    CAS  Google Scholar 

  • Barker, J.L., Nicoll, R.A., and Padjen, A., 1975, Studies on convulsants in the isolated frog spinal cord. II. Effects on root potentials. J. Physiol. (Lond.), 245:537.

    PubMed  CAS  Google Scholar 

  • Barron, D.H., Matthews, B.H.C., 1938, The interpretation of potential changes in the spinal cord, J. Physiol. (Lond.), 92:276.

    PubMed  CAS  Google Scholar 

  • Baylor, D.A., and Nicholls, J.G., 1969, Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech, J. Physiol. (Lond.), 203:555

    PubMed  CAS  Google Scholar 

  • Bruggencate Ten, G., Lux, H.D., and Liebl, L., 1974, Possible relationship between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat, Pflügers Arch. ges.Physiol., 349:301.

    Article  Google Scholar 

  • Czéh, G., Sykové, E., and Vyklický, L., 1980, Neurones activated from nociceptors in the spinal cord of the frog, Neuroscience Lett., 16:257.

    Article  Google Scholar 

  • Davidoff, R.A., and Hackman, J.C., 1980, Hyperpolarization of frog primary afferent fibres caused by activation of a sodium pump, J. Physiol. (Lond.), 302:297.

    PubMed  CAS  Google Scholar 

  • Davidoff, R.A., Hackman, J.C., and Osorio, I., 1980, Amino acid antagonists do not block the depolarizing effects of potassium ions on frog primary afferents, Neuroscienc., 5:117.

    Article  CAS  Google Scholar 

  • Eccles, J.C., 1964, Presynaptic inhibition. I.: “The Physiology of Synapse”, chap. XV, pp. 220–238, Berlin: Springer Verlag.

    Google Scholar 

  • Futamachi, K., and Pedley, T.A., 1976, Glial cells and potassium: their relationship in mammalian cortex, Brain Res., 109:311.

    Article  PubMed  CAS  Google Scholar 

  • Kříž, N., Syková, E,, Ujec, E., and Vyklický, L., 1974, Changes of extracellular potassium concentration induced by neuronal activity in the spinal cord of the cat, J. Physiol. (Lond.), 238:1.

    PubMed  Google Scholar 

  • Kříž, N., Sykové, E., and Vyklická, L., 1975, Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission, J. Physiol. (Lond.), 249:167.

    Google Scholar 

  • Krnjević, K., and Morris, M.E., 1972, Extracellular K+ activity and slow potential changes in spinal cord and medulla, Can. J. Physiol. Pharmaco., 50:1214.

    Article  Google Scholar 

  • Krnjević, K., and Morris, M.E., 1975a, Correlation between extracellular focal potentials and K+ potentials evoked by primary afferent activity, Can. J. Physiol. Pharmacol., 53:912.

    Article  PubMed  Google Scholar 

  • Krnjević, K., and Morris, M.E., 1975b, Factors determining the decay K+ potentials in the central nervous system, Can. J. Physiol. Pharmaco., 53:923.

    Article  Google Scholar 

  • Krnjević, K., and Morris, M.E., 1976, Input-output relation of transmission through cuneate nucleus, J. Physiol. (Lond.), 257:791.

    PubMed  Google Scholar 

  • Kuffler, S.W., Nicholls, J.G., and Orkand, R.K., 1966, Physiological properties of glial cells in the central nervous system of amphibia, J. Physiol. (Lond.), 29:768.

    CAS  Google Scholar 

  • Levy, R.A., 1977, The role of GABA in primary afferent depolarization, Prog. Neurobio., 9:211.

    Article  CAS  Google Scholar 

  • Lothman, E.W., and Somjen, G.G., 1975, Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord, J. Physiol. (Lond.), 252:115.

    PubMed  CAS  Google Scholar 

  • Neher, E., and Lux, H.D., 1973, Rapid changes in potassium concentration at the outer surface of exposed single neurons during membrane current flow, J. gen. Physiol., 61:385.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R.A., 1979, Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog, J. Physiol. (Lond.), 290:113.

    PubMed  CAS  Google Scholar 

  • Orkand, R.K., Nichools, J.G., and Kuffier, S.W., 1966, Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia, J. Neurophysio., 29:788.

    CAS  Google Scholar 

  • Prince, D.A., 1978, Neurophysiology of epilepsy, Ann.Rev.Neurosci., 1:395.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R.F., 1971, Presynaptic inhibition in the vertebrate central nervous system, Ergebn. Physiol., 63:21.

    Google Scholar 

  • Singer, W., and Lux, H.D., 1975, Extracellular potassium gradients and visual receptive fields in the cat striate cortex, Brain Res., 96:378.

    Article  PubMed  CAS  Google Scholar 

  • Somjen, G.G., 1979, Extracellular potassium in the mammalian central nervous system, Ann.Rev.Physiol., 41:159.

    Article  CAS  Google Scholar 

  • Somjen, G.G., and Lothman, E.W., 1974, Potassium sustained focal potential shifts and dorsal root potentials of the mammalian spinal cord, Brain Res., 69:153.

    Article  PubMed  CAS  Google Scholar 

  • Sykové, E., Czéh, G., and Kriz, N., 1980, Potassium accumulation in the frog spinal cord induced by nociceptive stimulation of the skin, Neurosci. Lett.,17:253.

    Article  Google Scholar 

  • Sykové, E., and Orkand, R.K., 1980, Extracellular potassium accumulation and transmission in frog spinal cord, Neuroscienc., 5:1421.

    Article  Google Scholar 

  • Sykové, E., Rothenberg, S., and Krekule, I., 1974, Changes of extracellular potassium concentration during spontaneous activity in the mesencephalic reticular formation of the rat, Brain Res., 79:333.

    Article  Google Scholar 

  • Sykové, E., Shirayev, B., Kriz, N., and Vyklický, L., 1976, Accumulation of extracellular potassium in the spinal cord of frog, Brain Res., 106:413.

    Article  Google Scholar 

  • Sykové, E., and Vyklický, L., 1977, Changes of extracellular potassium activity in isolated spinal cord of frog under high Mg2+ con centration, Neurosci. Lett., 4:161.

    Article  Google Scholar 

  • Sykové, E., and Vyklický, L., 1978, Effects of picrotoxin on potassium accumulation and dorsal root potentials in the frog spinal cord, Neuroscienc., 3:1061.

    Article  Google Scholar 

  • Székely, G., 1976, The morphology of motoneurons and dorsal root fibers in the frog’s spinal cord, Brain Res., 103:275.

    Article  PubMed  Google Scholar 

  • Vyklický, L., Sykové, E., Kfiz, N., and Ujec, E., 1972, Post-stimulation changes of extracellular potassium concentration in the spinal cord of the rat, Brain Res., 45:612.

    Article  Google Scholar 

  • Vyklický, L., Sykové, E., and Kříž, N., 1975, Slow potentials induced by changes of extracellular potassium in the spinal cord of the cat, Brain Res., 87:77.

    Article  PubMed  Google Scholar 

  • Vyklický, L., Sykové, E., and Mellerová, B., 1976, Depolarization of primary afférents in the frog spinal cord under high Mg2+ concentrations, Brain Res., 117:153.

    Article  PubMed  Google Scholar 

  • Walker, J.L., 1971, Ion specific liquid ion exchanger microelectrodes, Analyt. Chem., 43:89A.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Syková, E. (1981). Extracellular K+ Accumulation in the Spinal Cord. In: Syková, E., Hník, P., Vyklický, L. (eds) Ion-Selective Microelectrodes and Their Use in Excitable Tissues. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9224-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9224-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9226-6

  • Online ISBN: 978-1-4615-9224-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics