Skip to main content

Theoretical Advances in Quantum Electrodynamics

  • Chapter
Atomic Physics 7

Abstract

The history of quantum electrodynamics (QED) has been one of unblemished triumph. Given the apparent inevitability of its success, why should we continue studying QED?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Brandelik et al. (TASSO Collaboration), Deutsches Elektronen-Synchrotron preprint DESY 80/77 (April 1980).

    Google Scholar 

  2. C. Itzykson and J.-B. Zuber,Quantum Field Theory (McGraw-Hill, 1980), Section 9–4.

    Google Scholar 

  3. Standard references for field theory and QED include J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics and Relativistic Quantum Fields (McGraw-Hill, 1965)

    Google Scholar 

  4. a more elementary treatment is given in J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, 1967); see also Ref. 2.

    Google Scholar 

  5. Earlier and more comprehensive reviews include T. Kinoshita, in the Proceedings of the XIX International Conference on High Energy Physics, Tokyo, Japan (1978)

    Google Scholar 

  6. E. Lautrup et al, Phys. Rep. 3, 193 (1972).

    Article  ADS  Google Scholar 

  7. Advances in experimental QED are discussed in the paper by D. W. Gidley and A. Rich presented at this conference.

    Google Scholar 

  8. S. J. Brodsky and P. J. Mohr, in Heavy Ion Atomic Physics, I. A. Sellin, ed. (Springer-Verlag, 1977).

    Google Scholar 

  9. See, for example, P. 0. Egan’s talk given at this conference.

    Google Scholar 

  10. T. Kinoshita, Cornell preprint CLNS 79/437 (October 1979).

    Google Scholar 

  11. H. Dehmelt, talk presented at this conference.

    Google Scholar 

  12. R. S. Van Dyck, Jr., Bull. Am. Phys. Soc. 24, 758 (1979).

    Google Scholar 

  13. E. R. Williams and P. T. Olsen, Phys. Rev. Lett. 42, 1575 (1979).

    Article  ADS  Google Scholar 

  14. K. V. Klitzing et al., Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  15. S. J. Brodsky and S. D. Drell, Stanford Linear Accelerator Center preprint SLAC-PUB-2534 (June 1980).

    Google Scholar 

  16. J. Bailey et al., Phys. Lett. 68B,191 (1977).

    ADS  Google Scholar 

  17. The earliest application of these ideas was by E. Salpeter and H. Bethe, Phys. Rev. 84, 1232 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A thorough review of these ideas and of earlier references is given by G. P. Lepage, “Two-Body Bound States in Quantum Electrodynamics ”, Stanford Linear Accelerator Center report SLAC-212 (July 1978).

    Chapter  Google Scholar 

  19. See also G. P. Lepage, Phys. Rev. A16, 863 (1977).

    ADS  Google Scholar 

  20. W. E. Caswell and G. P. Lepage, Phys. Rev.A18, 810 (1978).

    ADS  Google Scholar 

  21. G. T. Bodwin and D. R. Yennie, Phys. Rep. 43, 267 (1978).

    Article  ADS  Google Scholar 

  22. D. R. Yennie, “The Bound State Problem in QED” talk given at the 1979 Cargese Summer School on Quarks and Leptons.

    Google Scholar 

  23. R. Barbieri and E. Remiddi, Nucl. Phys. B141, 413 (1978).

    Article  ADS  Google Scholar 

  24. We are working in the atom’s rest frame. Also Gt is in general weakly dependent upon the relative energies k° and p°. Here we choose k° = p° = 0 for convenience; fixing the relative energies does not shift the poles in the total energy E. Finally, notice that Gt depends (implcitly in Section IV) upon the spins of the atom’s constituents. We can define \(G_T \left( {\vec p,\vec k,E} \right)_{\lambda \lambda ',\mu \mu '} = u^{(1)} \left( {\vec k\mu } \right)^\dag u^{(2)} \left( { - \vec k\mu '} \right)^\dag \bar G_T \gamma _O^{(1)} \gamma _O^{(2)} u^{(1)} \left( {\vec p\lambda } \right)\) \({\text{x u}}^{{\text{(2)}}} ( - \vec p\lambda '{\text{)}}\) without loss of generality.

    Google Scholar 

  25. This follows since each GT(n)in Eq. (1) is finite at the bound state energies. It is also evident if one realizes that poles in E, as in Eq. (2), are also poles in á since -1 ot m ~I (Å-E ) - (E +-y) . Thus these poles cannot appear in any n 2n2 finite order polynomial of a, such as would result from truncating Eq. (1).

    Google Scholar 

  26. Eqs. (1)–(3) have close analogues in non-relativistic quantum mechanics. GT is analogous to the T-matrix used in describing P2 1 non-relativistic scattering. Formally T(E) = (E - %-) -*---V ^2 2m Å-Ç+ßå Ë ç where Ç = ^- + V is the complete Hamiltonian. Expanding in powers of V gives the Born series for Ô (= V + VSV + ...), which is analogous to Eq. (1). Note also that since a' .- = J * * , T(E) has poles at bound state energies En with residues related to the corresponding wave functions. Finally Ô satisfies the Lippmann-Schwinger equation T=V + VST, just as in Eq. (3).

    Google Scholar 

  27. Potential V can be derived by rewriting Eq. (3) as V = GT - VSGT = GT - GTSGT + GTSGTSGT - ... Substituting the perturbative expansion (1) for GT, we obtain recursion relations for the V(n): V(1)=GT(1), V(n)=G(n) - Õ V(n-m)SGW. m=l

    Google Scholar 

  28. This statement must be qualified. The expansion for V is convergent except for certain radiative corrections, such as contribute to the Lamb shift for example. These are always high order corrections to the spectrum, and as such are readily computed. What remains once these terms have been removed can be shown to converge using general power counting arguments. An excellent pedagogical review of the problems associated with Lamb shift-like corrections is in D. R. Yennie, in Lectures on Strong and Electromagnetic Interactions, Brandeis Summer Institute, Vol. I (1963).

    Google Scholar 

  29. Notice that δV is in general energy dependent. This results in additional terms in the perturbation series (see Ref. 14).

    Google Scholar 

  30. V. W. Hughes, “Muonium”, in Exotic Atoms 79, K. Crowe et al., eds. (Plenum Press, 1980).

    Google Scholar 

  31. This number combines that given in Ref. 23 with a new result quoted in E. Borie, preprint to be published in the proceedings of the Symposium uber Stand und Ziele der Quantenelektrodynamik, Mainz, W. Germany (1980).

    Google Scholar 

  32. These terms are reviewed in S. J. Brodsky and G. W. Erickson, Phys. Rev. 148, 26 (1966).

    Article  ADS  Google Scholar 

  33. These terms are reviewed in G. P. Lepage, Ref. 14, and in Ref. 15. See also G. T. Bodwin et al., Phys. Rev. Lett. 41, 1088 (1978).

    Article  ADS  Google Scholar 

  34. W. E. Caswell and G. P. Lepage, Phys. Rev. Lett.41, 1092 (1978).

    Article  ADS  Google Scholar 

  35. Terms through O(á3Ry) are explained in Ref. 2, Section 10-3-2. Higher order terms are derived in Refs. 14 and 31.

    Google Scholar 

  36. P. O. Egan et al., Phys. Rev. A15, 251 (1977).

    ADS  Google Scholar 

  37. A. P. Mills, Jr. and G. H. Bearman, Phys. Rev. Lett. 34, 246 (1975).

    Article  ADS  Google Scholar 

  38. Some progress has already been made. See V. K. Cung et al., Phys. Lett. 68B, 474 (1977),

    ADS  Google Scholar 

  39. W. Buchmuller E. Remiddi, Nucl. Phys. B162, 250 (1980).

    Article  ADS  Google Scholar 

  40. Theory for these rates is reviewed in W. E. Caswell and G. P. Lepage, Phys. Rev. A20, 36 (1979).

    ADS  Google Scholar 

  41. D. W. Gidley et al., Ref. 4.

    Google Scholar 

  42. S. Berko et al., Proc. 5th Int. Conf. on Positron Annihilation, Japan (1979).

    Google Scholar 

  43. T. Fulton and P. C. Martin, Phys. Rev. 95, 811 (1954).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Lepage, G.P. (1981). Theoretical Advances in Quantum Electrodynamics. In: Kleppner, D., Pipkin, F.M. (eds) Atomic Physics 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9206-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9206-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9208-2

  • Online ISBN: 978-1-4615-9206-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics