Skip to main content

Aspects of Radiation-Induced Mutagenesis and Malignant Transformation

  • Chapter
Trends in Photobiology

Abstract

Somatic cell mutation has long been considered as being invol ved in the carcinogenic process either of hereditary nature or induced by physical and chemical agents1–3. The mutation theory is essentially supported by a) The parallels between mutagenic and carcinogenic agents4, b) The hereditary nature of certain tumors such as retinoblastoma, multiple polyposis of the colon and neurofibromatosis that are transmitted as autoromal dominant mutations, c) The association between cancer proneness and high induced mutability in vitro such as in Xeroderma pigmentosum5–6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Boveri, The origin of malignant tumors, Williams and Wilkins Co, Baltimore (1929).

    Google Scholar 

  2. A.G. Knudson, Mutation and Cancer : Statistical study of reti-noblastoma, Proc. Natl. Acad. Sci. USA 68 : 820 (1971).

    Article  Google Scholar 

  3. D.E. Comings, A general theory of carcinogenesis, Proc. Natl.Acad. Sci. USA 70 : 3324 (1973).

    Article  Google Scholar 

  4. J. McCann, E. Choi, E. Yamasaki and B.N. Ames, Detection of carcinogens as mutagens in the Salmonella/microsome test :Assay of 300 chemicals, Proc. Natl. Acad. Sci. USA 72 :5135 (1975).

    Article  Google Scholar 

  5. V.M. Maher and J.J. McCormick, in “Biology of Radiation Carci nogenesis”, J.M. Yuhas, R.W. Tennant and J.D. Regan, eds., Raven Press, New York, pp. 129–145 (1976).

    Google Scholar 

  6. T.W. Glover, C.C. Chang, J.E. Trosko and S.S.L. Li, Ultraviolet light induction of diphteria toxin-resistant mutants in normal and Xeroderma pigmentosum human fibroblasts, Proc. Natl. Acad. Sci. USA 76 : 3982 (1979).

    Article  Google Scholar 

  7. J.C. Barrett and P.O.P. Ts’o, Evidence of the progressive nature of neoplasmic transformation in vitro, Proc. Natl.Acad. Sci. USA 75 : 3761 (1978).

    Article  Google Scholar 

  8. C. Waldren, C. Jones and T.T. Puck, Measurement of mutagenesis in mammalian cells, Proc. Natl. Acad. Sci. USA 76 : 1358 (1979).

    Article  Google Scholar 

  9. E.J. Stanbridge and J. Wilkinson, Analysis of malignancy in human cells : malignant and transformed phenotypes are under separate genetic control, Proc. Natl. Acad. Sci. USA 75 : 1466 (1978).

    Article  Google Scholar 

  10. C. Borek, in “Biology of Radiation Carcinogenesis”, J.M. Yuhas, R.W. Tennant and J.D. Regan, eds., Raven Press, New York, pp. 309–326 (1976).

    Google Scholar 

  11. J.B. Little, in “Origins of Human Cancer”, H.H. Hialt, J.D. Watson and J.A. Winsten, eds., Cold Spring Harbor Conferences on Cell Proliferation, Vol. 4, Part B, p. 923 (1977).

    Google Scholar 

  12. C. Borek, X-ray-induced in vitro neoplastic transformation of human diploid cells, Nature 283 : 776 (1980).

    Article  Google Scholar 

  13. E.H.Y. Chu, Mammalian cell genetics. III. Characterisation of X-rays-induced forward mutations in Chinese hamster cell cultures, Mutation Res. 11 : 23 (1971).

    Article  Google Scholar 

  14. C.F. Arlett and J. Potter, Mutation to 8-azaguanine resistance induced by gamma-radiation in a Chinese hamster cell line, Mutation Res. 13 : 59 (1971).

    Article  Google Scholar 

  15. R.J. Albettini and R. De Mars, Somatic cell mutation. Detection and quantification of X-ray induced mutation in cultured, diploid human fibroblasts, Mutation Res. 18 : 199 (1973).

    Article  Google Scholar 

  16. H.J. Burki, Ionizing radiation-induced 6-thioguanine resistant clones in synchronous CH0 cells, Radiation Res. 81 : 76 (1980).

    Article  Google Scholar 

  17. J.W.I.M. Simons, Dose-response relationships for mutants in mammalian somatic cells in vitro, Mutation Res. 25 : 219 (1974).

    Article  Google Scholar 

  18. R. Cox and W.K. Masson, X-ray dose response for mutation to fructose utilisation in cultured human diploid cells, Nature 252 : 308 (1974).

    Article  Google Scholar 

  19. J. Thacker and R. Cox, Mutation induction and inactivation in mammalian cells exposed to ionising radiation, Nature 258 : 429 (1975).

    Article  Google Scholar 

  20. R. Cox and W.K. Masson, X-ray-induced mutation to 6-thioguani ne resistance in cultured human diploid fibroblasts, Mutation Res. 37 : 125 (1976).

    Article  Google Scholar 

  21. S. Parodi and G. Brambilla, Relationships between mutation and transformation frequencies in mammalian cells treated in vitro with chemical carcinogens, Mutation Res. 47 : 53 (1977).

    Google Scholar 

  22. T. Kakunaga, J.D. Crow and C. Augl, in “Radiation Res. Proc. of Sixth Int. Cong, of Rad. Res.”, S. Okada, M. Imamura, T. Terashima and H. Yamaguchi, eds., Topan Press, Tokyo, p. 589 (1979).

    Google Scholar 

  23. B.C. Myhr, D. Turnbull and J.A. DiPaolo, Ultraviolet mutagene sis of normal and Xeroderma pigmentosum variant human fi broblasts, Mutation Res. 62 : 341 (1979).

    Article  Google Scholar 

  24. C.F. Arlett and S.A. Harcourt, Expression time and mutability in the estimation of induced mutation frequency following treatment of Chinese hamster cells by ultraviolet light, Mutation Res. 16 : 301 (1972).

    Article  Google Scholar 

  25. A.W. Hsie, P.A. Brimer, T.J. Mitchell and D.G. Gosslu, The dose-response relationship for ultraviolet-light-induced mutations at the hypoxanthine-guanine phosphoribosyltransferase locus in Chinese hamster ovary cells, Somatic Cell Genet. 1 : 383 (1975).

    Article  Google Scholar 

  26. C.C. Chang, J.E. Trosko and T. Akera, Characterization of ultraviolet-light-induced ouabain-resistant mutations in Chinese hamster cells, Mutation Res. 51 : 85 (1978).

    Article  Google Scholar 

  27. J.E. Cleaver, Induction of thioguanine and ouabain-resistant mutants and single-strand breaks in the DNA of Chinese hamster ovary cells by -thymidine, Genetics 87 : 129 (1977).

    Google Scholar 

  28. M. Fox and S. McMillan, Evidence for the involvement of different repair mechanisms in mutagenesis and cell killing in V79 cells, in “DNA Repair Mechanisms”, P.C. Hanawalt, C.F. Fox and E.C. Freidberg, eds., Academic Press, New York, p. 723 (1978).

    Google Scholar 

  29. H.J. Burki, C.K. Lam and R.D. Wood, UV-light-induced mutations in synchronous CHO cells, Mutation Res. 69 : 347 (1980).

    Article  Google Scholar 

  30. J.A. DiPaolo and P.J. Donovan, In vitro morphologic transformation of Syrian Hamster cells by UV-irradiation is enhanced by X-irradiation and unaffected by chemical carcinogens, Int. J. Rad. Biol. 30 : 41 (1976).

    Article  Google Scholar 

  31. Y. Ishii, J.A. Elliott, N.K. Mishra and M.W. Lieberman, Quantitative studies of transformation by chemical carcinogens and ultraviolet radiation using a subclone of BHK2l clone13 Syrian Hamster cells, Cancer Res. 37 : 2023 (1977).

    Google Scholar 

  32. T.J. Withrow, M.H. Lugo and M.J. Deunsey, Transformation of BALB 3T3 cells exposed to a germicidal UV lamp and a sun lamp, Photochem. Photobiol. 31 : 135 (1980).

    Article  Google Scholar 

  33. E.C. Friedberg, U.K. Ehmann and J.I. Williams, in “Advances in Radiation Biology”, J.T. Lett and H. Adler, eds., Academic Press, New York, Vol. 8 : 85 (1979).

    Google Scholar 

  34. V.M. Maher, L.M. Ouelette, R.D. Curren and J.J. McCormick, Frequency of ultraviolet light-induced mutations is higher in Xeroderma pigmentosum variant cells than in normal human cells, Nature 261 : 593 (1976).

    Article  Google Scholar 

  35. T.D. Stamato and C.A. Waldren, Isolation of UV-sensitive va riants of CH0-K1 by nylon cloth replica plating, Somatic Cell Genet. 3 : 431 (1977).

    Article  Google Scholar 

  36. T. Shiomi and K. Sato, Isolation of UV-sensitive variants of human FL cells by a viral suicide method, Somatic Cell Genet. 5 : 193 (1979).

    Article  Google Scholar 

  37. L.H. Thompson, J.S. Rubin, J.E. Cleaver, G.F. Whitmore and K. Brookman, A screening method for isolating DNA repair-deficient mutants of CHO cells, Somatic Cell Genet. 6 : 391 (1980).

    Article  Google Scholar 

  38. D.B. Busch, J.E. Cleaver and D.A. Glaser, Large-scale isola÷* tion of UV-sensitive clones of CHO cells, Somatic Cell Genet. 6 : 407 (1980).

    Article  Google Scholar 

  39. R.W. Hart, R.B. Setlow and A.D. Woodhead, Evidence that pyri-midine dimers can give rise to tumors, Proc. Natl. Acad.Sci. USA 74 : 5574 (1977).

    Article  Google Scholar 

  40. R.R. Weichselbaum, J. Nove and J.B. Little, Deficient recovery from potentially lethal radiation damage in Ataxia telangiectasia and Xeroderma pigmentosum, Nature 271 : 261 (1978).

    Article  Google Scholar 

  41. J.W. Simons, Development of a liquid-holding technique for the study of DNA-repair in human diploid fibroblasts, Mutation Res. 59 : 273 (1979).

    Article  Google Scholar 

  42. V.M. Maher, D.J. Dorney, A.L. Mendrala, B. Konze-Thomas and J. J. McCormick, DNA excision-repair processes in human cells can eliminate the cytotoxic and mutagenic consequences of ultraviolet irradiation, Mutation Res. 62 : 311 (1979).

    Article  Google Scholar 

  43. G.L. Chan, H. Nagasawa and J.B. Little, in “Radiation Res. Proc. of Sixth Int. Cong, of Rad. Res.”, S. Okada, M. Imamura, T. Terashima and H. Yamaguchi, eds., Topan Press, Tokyo, p. 603 (1979).

    Google Scholar 

  44. J.C. Asquith, The effect of dose fractionation on y-radiation induced mutations in mammalian cells, Mutation Res. 43 : 91 (1977).

    Article  Google Scholar 

  45. W.G. Tilby and C. Heidelberger, Cytotoxicity and mutagenicity of ultraviolet irradiation as a function of the interval between split doses in cultured Chinese hamster cells, Mutation Res. 17 : 287 (1973).

    Article  Google Scholar 

  46. C.C. Chang, S.M. D’Ambrosio, R. Schultz, J.E. Trosko and R.B. Setlow, Modification of UV-induced mutation frequencies in Chinese hamster cells by dose fractionation, cycloheximide and caffeine treatments, Mutation Res. 52 : 231 (1978).

    Article  Google Scholar 

  47. R.M. Miller and E.C. Hall, X-ray dose fractionation and onco-genic transformation in cultured mouse embryo cells,Nature 272 : 58 (1978).

    Article  Google Scholar 

  48. S.M. D’Ambrosio and R.B. Setlow, Enhancement of post replica tion repair in Chinese hamster cells, Proc. Natl. Acad. Sci. USA 73 : 2396 (1976).

    Article  Google Scholar 

  49. S.M. D’Ambrosio, P.M. Aebersold and R.B. Setlow, Enhancement of post replication repair in ultraviolet-light-irradiated Chinese hamster cells by irradiation in G2 or S phase, Biophys. J. 23 : 71 (1978).

    Article  Google Scholar 

  50. R.B. Setlow, F.E. Ahmed and E. Grist, in “Origins of Human Cancer”, H.H. Hiatt, J.D. Watson and J.A. Winsten, eds., Cold Spring Harbor Conferences on Cell Proliferation, Vol.4, Part B, p. 889 (1977).

    Google Scholar 

  51. R.B. Painter, Does ultraviolet light enhance post replication repair in mammalian cells ?, Nature 2 75 : 243 (1978).

    Article  Google Scholar 

  52. E. Moustacchi, U.K. Ehmann and E.C. Friedberg, Defective recovery of semi-conservative DNA synthesis in Xeroderma pigmentosum cells following split-dose ultraviolet irradiation, Mutation Res. 62 : 159 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Moustacchi, E. (1982). Aspects of Radiation-Induced Mutagenesis and Malignant Transformation. In: Hélène, C., Charlier, M., Montenay-Garestier, T., Laustriat, G. (eds) Trends in Photobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9203-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9203-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9205-1

  • Online ISBN: 978-1-4615-9203-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics