Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 33))

Abstract

A wide variety of biological phenomena are blue light-dependent, responding to light of wavelengths below 500 nm. This topic has been the subject of many review articles; a recent one by Schmidt (1) is particularly useful, both in its description of the phenomena and in exploring the basis of the possible molecular mechanisms involved. Many individual examples of blue light photoreception will be dealt with in detail at this meeting; I will simply list here those examples where action spectra permit a reasonable conclusion about the nature of the photoreceptor. There now seems to be general agreement that flavin is the blue light photoreceptor (1). This conclusion is based on several lines of evidence. The action spectra of most blue light dependent biological phenomena show a prominent band around 450 nm, often with a distinct shoulder in the region of 470-480 nm. This spectral characteristic is shared by two classes of widely spread biological compounds, flavins and carotenes. In addition most action spectra also exhibit a near-UV band, in the region of 350 nm. There is however much less consistency about the shape, position and “intensity” of this band, a fact chiefly responsible for the past uncertainty about whether flavin or carotene is the blue light photoreceptor. Flavins do possess such an absorption band, as does cis-ß-carotene. However trans-ß-carotene does not, and the biological occurrence of cis-ß-carotene is apparently quite rare. Particularly important is the failure to detect this form in one of the archetypal organisms exhibiting blue light photoresponse, Phycomyces (2). Another important piece of evidence is that carotene-deficient mutants of various biological species generally exhibit the same blue light responses as the wild types (3-5). Finally while carotene is present in high concentrations in the growing avena coleoptile, it has been shown by microchemical techniques to be absent from the apex, which is the most photosensitive zone of the coleoptile (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Schmidt, Structure and Bonding (in press) (1979).

    Google Scholar 

  2. D. Presti, W.-J. & M. Delbrück, Photochem. Photobiol. 26:403 (1977).

    Article  Google Scholar 

  3. M. L. Sargent & W. R. Briggs, Plant Physiol. 42:1504 (1967).

    Article  Google Scholar 

  4. W. E. Zimmerman & T. H. Goldsmith, Science 171:1167 (1971).

    Article  Google Scholar 

  5. E. Klemm & H. Ninnemann, Photochem. Photobiol. 24:369 (1976).

    Article  Google Scholar 

  6. E. Bünning, Planta 26:719 (1937).

    Article  Google Scholar 

  7. G. M. Curry & H. E. Gruen, Proc.Natl.Acad.Sci.USA 45:797 (1959).

    Article  Google Scholar 

  8. M. Delbrück & W. Shrophire Jr. Plant Physiol. 35:194 (1960).

    Article  Google Scholar 

  9. M. Delbrück, A. Katzir & D. Presti, Proc. Natl.Acad. Sci. 37: 1969 (1976).

    Article  Google Scholar 

  10. R. M. Page & G. M. Curry, Photochem. Photobiol. 5:31 (1966).

    Article  Google Scholar 

  11. M. Everett & K, V. Thimann, Plant Physiol. 43:1786 (1968).

    Article  Google Scholar 

  12. G. M. Curry, Ph. D. Thesis, Harvard University, Cambridge, Mass. (USA) (1957).

    Google Scholar 

  13. B. Diehn, Biochim. Biophys. Acta 177:136 (1969).

    Article  Google Scholar 

  14. E. C. De Fabo, R. W. Harding & W. Shrophire Jr., Plant Physiol. 57:440 (1976).

    Article  Google Scholar 

  15. C. D. Howes & P.P. Batra, Arch. Biochem. Biophys. 137:175 (1970).

    Article  Google Scholar 

  16. W. Rau, Planta 72:14 (1967).

    Article  Google Scholar 

  17. J. Zurzycki, Acta Soc. Bot. Pol. 39:483 (1970).

    Google Scholar 

  18. J. M. Pickett & C. S. French, Proc.Natl.Acad.Sci.US. 57:1587 (1967).

    Article  Google Scholar 

  19. G. Brinkman & H. Senger, Plant and Cell Physiol. 19:1427 (1978).

    Google Scholar 

  20. H. Mohr, Planta 47:127 (1956).

    Article  Google Scholar 

  21. A. M. Steiner, Naturwissensch. 18:497 (1967).

    Google Scholar 

  22. K. G. Bruce & D. H. Minis, Science 163:583 (1969).

    Article  Google Scholar 

  23. J. Zurzycki, Acta Protozoologica 11:189 (1972).

    Google Scholar 

  24. P. S. Song & T. A. Moore, Photochem. Photobiol. 19:435 (1974).

    Article  Google Scholar 

  25. L. F. Jaffe, Exp. Cell Research 15:282 (1958).

    Article  Google Scholar 

  26. E. S. Castle, J. Gen. Physiol. 17:751 (1934).

    Article  Google Scholar 

  27. A. J. Jesaitis, J. Gen. Physiol. 63:1 (1974).

    Article  Google Scholar 

  28. F. Mayer, Z. Bot. 52:346 (1964).

    Google Scholar 

  29. W. Shropshire, Jr., Science 130:336 (1959).

    Article  Google Scholar 

  30. L. Jaffe & H. Etzold, J. Cell Biol. 13:13 (1962).

    Article  Google Scholar 

  31. R. G. Matthews, V. Massey & C. C. Sweeley, J. Biol. Chem. 250:9294 (1975).

    Google Scholar 

  32. A. S. Abramovitz & V. Massey, J. Biol. Chem. 251:5329 (1976).

    Google Scholar 

  33. L. P. Vernon, Biochim. Biophys. Acta 36:177 (1959).

    Article  Google Scholar 

  34. W. R. Frisell, C. W. Chung & C.G. Mackenzie, J. Biol. Chem. 234:1297 (1959).

    Google Scholar 

  35. G. R. Penzer & G. K. Radda, Biochem. J. 109:259 (1968).

    Google Scholar 

  36. P. Hemmerich, V. Massey & G. Weber, Nature 213:728 (1967).

    Article  Google Scholar 

  37. W. Haas & P. Hemmerich, Biochem. J. 181:95 (1979).

    Google Scholar 

  38. M. Zalonkar, Arch. Biochem. Biophys. 50:71 (1974).

    Article  Google Scholar 

  39. H. C. Rilling, Biochim. Biophys. Acta 60:548 (1962).

    Article  Google Scholar 

  40. R. R. Theimer W. Rau, Planta 92:129 (1970).

    Article  Google Scholar 

  41. W. Rau, B. Feuser & A. Rau-Hund, Biochim. Biophys. Acta 136: 589 (1967).

    Article  Google Scholar 

  42. V. Massey, M. Stankovich & P. Hemmerich, Biochemistry 17:1 (1978).

    Article  Google Scholar 

  43. V. Massey, S. Strickland, S. G. Mayhew, L. G. Howell, P. C. Engel, R. G. Matthews, M. Schuman & P. A. Sullivan, Biochem. Biophys. Res. Comm. 36:891 (1969).

    Article  Google Scholar 

  44. J. A. Fee, in “IS0X III”, T. E. King, H. S. Mason & M. Morrison, eds., University Park Press, Baltimore (in press) (1979).

    Google Scholar 

  45. D. S. Berns & J. R. Vaughn, Biochem. Biophys. Res. Comm. 39: 1094 (1970).

    Article  Google Scholar 

  46. K. L. Poff & W. L. Butler, Nature 248:799 (1974).

    Article  Google Scholar 

  47. E. D. Lipson & D. Presti, Photochem. Photobiol. 25:203 (1977).

    Article  Google Scholar 

  48. V. Muñoz & W. L. Butler, Plant Physiol. 55:421 (1975).

    Article  Google Scholar 

  49. S. Widell, J. Britz & W. R. Briggs, Carnegie Institution Year Book 77:344 (1978).

    Google Scholar 

  50. M. H. M. Goldsmith & W. R. Briggs, Carnegie Institution Year Book 77:347 (1978).

    Google Scholar 

  51. W. H. Walker, P. Hemmerich & V. Massey, Eur. J. Biochem. 13: 258 (1970).

    Article  Google Scholar 

  52. S. Ghisla, V. Massey, J.-M. Lloste & S. G. Mayhew, Biochemistry 13:589 (1974).

    Article  Google Scholar 

  53. W. Schmidt, J. Hart, P. Filner & K. L. Poff, Plant Physiol. 60:736 (1977).

    Article  Google Scholar 

  54. F. Müller & V. Massey, J. Biol.Chem. 244:4007 (1969).

    Google Scholar 

  55. V. Massey, F. Müller, R. Feldberg, M. Schuman, P. A. Sullivan, L. G. Howell, S. G. Mayhew, R. G. Matthews & G. P. Foust, J. Biol. Chem. 244:3999 (1969).

    Google Scholar 

  56. S. Ghisla & V. Massey, J. Biol. Chem. 250:577 (1975).

    Google Scholar 

  57. S. Ghisla, V. Massey & Y. S. Choong, J. Biol. Chem. (in press) (1979).

    Google Scholar 

  58. P. Hemmerich, in “Progress in the Chemistry of Organic Natural Products”, W. Herz, H. Grisbach & G. W. Kirby, eds., Springer Verlag, Vienna (1976).

    Google Scholar 

  59. W. Kowallik, Plant Physiol. 42:672 (1967).

    Article  Google Scholar 

  60. J. Lang-Feulner & W. Rau, Photochem. Photobiol. 21:179 (1975).

    Article  Google Scholar 

  61. D. E. Edmondson & T. P. Singer, FEBS Lett. 64:255 (1976).

    Article  Google Scholar 

  62. D. J. Steenkamp, W. McIntire & W. C. Kenney, J. Biol. Chem. 253:2818 (1978).

    Google Scholar 

  63. S. Kasai, R. Miura & K. Matsui, Bull. Chem. Soc. Japan 48:2877 (1975).

    Article  Google Scholar 

  64. G. Blankenhorn, Eur. J. Biochem. 82:155 (1978).

    Article  Google Scholar 

  65. S. G. Mayhew, C.D. Whitfiled, S. Ghisla & M. Schuman-Jorns, Eur. J. Biochem. 44:579 (1974).

    Article  Google Scholar 

  66. S. Ghisla & S. G. Mayhew, Eur. J. Biochem. 63:373 (1976).

    Article  Google Scholar 

  67. S. Ghisla, V. Massey & S. G. Mayhew, in “Flavins and Flavopro-teins”, T. P. Singer, ed., Elsevier, Amsterdam (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Massey, V. (1980). Possible Photoregulation by Flavoproteins. In: Lenci, F., Colombetti, G. (eds) Photoreception and Sensory Transduction in Aneural Organisms. NATO Advanced Study Institutes Series, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9164-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9164-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9166-5

  • Online ISBN: 978-1-4615-9164-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics