Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 33))

Abstract

Transducer. Any device by which variations in one quantity (e.g. pressure, brightness) are quantitatively converted into variations in another (e.g. voltage, position) — Oxford English Dictionary (1). It is from this term that transduction, as employed in sensory physiology, appears to be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “The Shorter Oxford English Dictionary on Historical Principles” 3rd edition. Addenda, Clarendon Press, Oxford (1973).

    Google Scholar 

  2. M. J. Carlile, in“Primitive Sensory and Communication Systems:. The Taxes and Tropism of Microorganisms and Cells”, M. J. Carlile, ed., Academic Press, London (1975).

    Google Scholar 

  3. B. Diehn, M. Feinleib, W. Haupt, E. Hildebrand, F. Lenci, E. Nultsch, Photochem. Photobiol. 26:559 (1977).

    Article  Google Scholar 

  4. R. K. Clayton, Archiv. für Mikrobiol. 27:344 (1957).

    Google Scholar 

  5. H. C. Berg, & D. A. Brown, Nature 239:500 (1972).

    Article  Google Scholar 

  6. H. C. Berg, Rev. Sci. Instrum. 42:868 (1971).

    Article  Google Scholar 

  7. R. M. MacNab, & D. E. Koshland, Proc. Natl. Acad. Sci. USA, 69:2509 (1972).

    Article  Google Scholar 

  8. N. Tsang, R. MacNab, & D. E. Koshland, Science 181:60 (1973).

    Article  Google Scholar 

  9. J. F. Rohlf, & D. Davenport, J. Theor. Biol. 23:400 (1969).

    Article  Google Scholar 

  10. E. Hildebrand, in “Taxis and Behaviour: Elementary Sensory Systems in Biology”, G. L. Hazelbauer, ed., Chapman & Hall, London (1978).

    Google Scholar 

  11. A. G. Lee, & J. T. R. Fitzsimmons, J. Gen.Microbiol. 93:346 (1976).

    Google Scholar 

  12. B. Diehn, Science 181:1009 (1973).

    Article  Google Scholar 

  13. D. L. Gunn, Anim. Behav. 23:409 (1975).

    Article  Google Scholar 

  14. J. S. Kennedy, Physiol. Entomol. J. 3:91 (1978).

    Article  Google Scholar 

  15. H. C. Berg, & E. M. Purcell, Biophys. J. 20:193 (1977)

    Article  Google Scholar 

  16. S. H. Zigmond, Nature 249:450 (1974).

    Article  Google Scholar 

  17. S. H. Zigmond, J. Cell. Biol. 73:606 (1977).

    Article  Google Scholar 

  18. K. L. Poff, & W. F. Loomis, Exp. Cell. Res. 82:236 (1973).

    Article  Google Scholar 

  19. K. W. Foster, Ann. Rev. Biophys. Bioeng. 6:419 (1977).

    Article  Google Scholar 

  20. M. A. Feinleib, Photochem. Photobiol. 21:351 (1975).

    Article  Google Scholar 

  21. F. Lenci, & G. Colombetti, Ann. Rev. Biophys. Bioeng. 7:341 (1978).

    Article  Google Scholar 

  22. H. C. Berg, & P. N. Tedesco, Proc. Natl. Acad. Sci. USA 72:3235 (1975).

    Article  Google Scholar 

  23. R. M. MacNab, C.R.T. Crit. Revs. in Biochem. 5:291 (1978).

    Article  Google Scholar 

  24. M. F. Goy, & M. S. Springer, in “Taxis and Behavior: Elementary Sensory Systems in Biology”, C. L. Hazelbauer, ed., Chapman & Hall, London (1978).

    Google Scholar 

  25. D. E. Koshland, Science 196:1055 (1977).

    Article  Google Scholar 

  26. J. R. Medina, & E. Cerdà-Olmedo, J. Theor. Biol. 69:709 (1977).

    Article  Google Scholar 

  27. R. N. Allen, & J. D. Harvey, J. Gen. Microbiol. 84:28 (1974).

    Google Scholar 

  28. P. C. Wilkinson, in “Taxis and Behavior: Elementary Sensory Systems in Biology”, G. L. Hazelbauer, ed., Chapman & Hall, London (1978).

    Google Scholar 

  29. D. P. Hader, & K. L. Poff, Photochem. Photobiol. 29:1157 (1979).

    Article  Google Scholar 

  30. J. Bialczyk, & L. Rakoczy, Bull. Acad. Polon. Sci. Sér. Sci. Biol. 23:571 (1975).

    Google Scholar 

  31. M. Hato, T. Hueda, K. Kurihara, & Y. Kobatake, Cell Struct. and function 1:269 (1976).

    Article  Google Scholar 

  32. J. A. Robertson, Arch. Mikrobiol. 85:259 (1972).

    Article  Google Scholar 

  33. F. Y. Kazama, J. Gen. Microbiol. 71:555 (1972).

    Google Scholar 

  34. E. Cerdà-Olmedo, Ann. Rev. Microbiol. 31:535 (1977).

    Article  Google Scholar 

  35. M. Delbrück, A. Katzir, & D. Presti, Proc. Natl. Acad. Sci. USA 73:1969 (1976).

    Article  Google Scholar 

  36. G. Kochert, Ann. Rev. Plant Physiol. 29:461 (1978).

    Article  Google Scholar 

  37. M. Levandovsky, & D. C. R. Hauser, Int. Rev. Cytol. 53:145 (1978).

    Article  Google Scholar 

  38. M. Darmon, & P. Brachet, in “Taxis and Behavior: Elementary Systems in Biology”, G. L. Hazelbauer, ed., Chapman & Hall, London (1978).

    Google Scholar 

  39. P. C. Newell, in “Microbial Interactions” J. L. Reissig, ed., Chapman & Hall, London (1977).

    Google Scholar 

  40. J. T. Bonner, Mycologia 69:443 (1977).

    Article  Google Scholar 

  41. S. H. Zigmond, J. Cell Biol. 77:269 (1978).

    Article  Google Scholar 

  42. D. L. Nelson, & C. Kung, in “Taxis and Behavior: Elementary Systems in Cell Biology”, G. L. Hazelbauer, ed., Chapman & Hall, London (1978).

    Google Scholar 

  43. C. Kung, S. Y. Chan, Y. Satow, J. Van Houten, & H. Hansma, Science 188:898 (1975).

    Google Scholar 

  44. G. A. Dunn, & T. Ebendal, Zoon 6:65 (1978).

    Google Scholar 

  45. K. Maeda, & Y. Imae, Proc. Natl. Acad. Sci. USA 76:91 (1979).

    Article  Google Scholar 

  46. T. Hennessey, & D. L. Nelson, J. Gen. Microbiol. 112:337 (1979).

    Google Scholar 

  47. W. W. Tso, & T. E. Mansour, Behav. Biol. 14:499 (1975).

    Article  Google Scholar 

  48. K. L. Poff, & M. Skokut, Proc. Natl. Acad. Sci. USA 74:2007 (1977).

    Article  Google Scholar 

  49. B. Bean, J. Protozool. 24:349 (1977).

    Google Scholar 

  50. A. Grebecki, & G. Nowakowska, Acta Protozool. 16:351 (1977).

    Google Scholar 

  51. G. Nowakowska, & A. Grebecki, Acta Protozool. 16:359 (1977).

    Google Scholar 

  52. J. N. Cameron, & M. J. Carlile, J. Gen. Microbiol. 98:599 (1977).

    Google Scholar 

  53. H. Winet, & T. L. Jahn, J. Theor. Biol. 46:449 (1974).

    Article  Google Scholar 

  54. R. Blakemore, Science 190:377 (1975).

    Article  Google Scholar 

  55. R. B. Frankel, R. P. Blakemore, & R. S. Wolfe, Science 203:1355 (1979).

    Article  Google Scholar 

  56. J. Adler, Cold Spring Harbor Symp. Quant. Biol. 30:289 (1965).

    Article  Google Scholar 

  57. J. Adler, Ann. Rev. Biochem. 44:341 (1975).

    Article  Google Scholar 

  58. H. C. Berg, Ann. Rev. Biophys. Bioeng. 4:119 (1975).

    Article  Google Scholar 

  59. G. L. Hazelbauer, & J. S. Parkinson, in “Microbial Interactions”, J. L. Reissig, ed., Chapman & Hall, London (1977).

    Google Scholar 

  60. R. M. MacNab, in “Encyclopedia of Plant Physiology, New Series Vol. 7: Physiology of Movements”, W. Haupt, & M. E. Feinleib, eds., Springer Verlag, Heidelberg, (1979).

    Google Scholar 

  61. D. E. Koshland, in “Symp. Soc. Gen. Microbiol. Vol. 27: Microbial Energetics”, B. A. Haddock, and W. A. Hamilton, eds., Cambridge University Press, Cambridge (1977).

    Google Scholar 

  62. J. S. Parkinson, Ann. Rev. Genet. 11:397 (1977).

    Article  Google Scholar 

  63. M. S. Springer, M. F. Goy, & J. Adler, Nature 280:279 (1979).

    Article  Google Scholar 

  64. R. M. MacNab, in “Encyclopedia of Plant Physiology: New Series, Vol. 7: Physiology of Movements”, W. Haupt, & M. E. Feinleib, eds., Springer Verlag, Heidelberg, (1979).

    Google Scholar 

  65. R. M. MacNab, Trends in Biochem. Sci. N10;N13 (Jan. 1979).

    Google Scholar 

  66. T. Iino, Ann. Rev. Genet. 11:161 (1977).

    Article  Google Scholar 

  67. M. Silverman, & M. I. Simon, Ann. Rev. Microbiol. 31;397 (1977).

    Article  Google Scholar 

  68. M. Simon, M. Silverman, P. Matsumura, H. Ridgeway, Y. Komeda, M. Hilman, Symp. Soc. Gen. Microbiol. 28 “Relations between Structure and Function in the Prokaryotic Cell”, R. Y. Stanier, H. J. Rogers, & B. J. Ward, eds., Cambridge University Press, Cambridge (1978).

    Google Scholar 

  69. G. W. Ordal, Nature 270:66 (1977).

    Article  Google Scholar 

  70. G. W. Ordal, J. Bact. 126:706 (1976).

    Google Scholar 

  71. S. Szmelcman, & J. Adler, Proc. Natl. Acad. Sci. USA 73:4387 (1976).

    Article  Google Scholar 

  72. J. B. Miller, & D. E. Koshland, Proc. Natl. Acad. Sci.USA 74:4752 (1977).

    Article  Google Scholar 

  73. S. Harayama, & T. Iino, J. Bact. 131:34 (1977).

    Google Scholar 

  74. J. P. Armitage, & M. C. W. Evans, FEBS Letters 102:243 (1979).

    Article  Google Scholar 

  75. B. H. Caraway, & R. N. Krieg, Canad. J. Microbiol. 18:1749 (1972).

    Article  Google Scholar 

  76. E. Canale-Parola, Ann. Rev. Microbiol. 32:69 (1978).

    Article  Google Scholar 

  77. L. N. Halfen, in “Encyclopedia of Plant Physiology, New Series, Vol. 7: Physiology of Movements”, W. Haupt, M. E. Feinleib, eds., Springer Verlag, Heidelberg (1979).

    Google Scholar 

  78. R. D. Allen, & N. S. Allen, Ann. Rev. Biophys.Bioeng. 7:469 (1978).

    Article  Google Scholar 

  79. M. Abercrombie, G. A. Dunn, & J. P. Heath, in “Cell and Tissue Interactions”, J. W. Lash, M. M. Burger, eds., Raven Press, New York (1977).

    Google Scholar 

  80. D. A. Ress, C. W. Lloyd, & D. Thom, Nature 267:124 (1977).

    Article  Google Scholar 

  81. P. Satir, & G. K. Ojakian, in “Encyclopedia of Plant Physiology, New Series, Vol. 7; Physiology of Movements”, W. Haupt, & M. E. Feinleib, eds., Springer Verlag, Heidelberg (1979).

    Google Scholar 

  82. A. P. Trinci, Sci. Prog. 65:75 (1978).

    Google Scholar 

  83. K. L. Poff, & B. D. Whitaker, in “Encyclopedia of Plant Physiology, New Series, Vol. 7; Physiology of Movements”, W. Haupt, & M. E. Feinleib, eds., Springer Verlag, Heidelberg, (1979).

    Google Scholar 

  84. W. F. Loomis, Devel. Biol. 70:1 (1979).

    Article  Google Scholar 

  85. D. J. C. Knowles, & M. J. Carlile, J. Gen. Microbiol. 108:17 (1978).

    Google Scholar 

  86. T. Ueda, & Y. Kobatake, Cytobiol. 16:16 (1977).

    Google Scholar 

  87. D. P. Häder, in “Encyclopedia of Plant Physiology, New Series, Vol. 7: Physiology of Movements”, W. Haupt, & M. E. Feinleib, eds., Springer Verlag, Heidelberg (1979).

    Google Scholar 

  88. W. Nultsch, & D. P. Hader, Photochem. Photobiol. 29:423 (1979).

    Article  Google Scholar 

  89. B. Bean, in “Encyclopedia of Plant Physiology, New Series, Vol. 7: Physiology of Movements”, W. Haupt, & M. E. Feinleib, eds., Springer Verlag, Heidelberg (1979).

    Google Scholar 

  90. R. Eckert, & P. Brehm, Ann. Rev. Biophys. Bioeng. 8:353 (1979).

    Article  Google Scholar 

  91. J. Van Houten, Science 204:1100 (1979).

    Article  Google Scholar 

  92. R. Pado, Acta Protozool. 11:387 (1972).

    Google Scholar 

  93. M. J. Carlile, in “Photobiology of Microorganisms”, P. Halldal, ed., Wiley, London (1970).

    Google Scholar 

  94. G. W. Gooday, in “Primitive Sensory and Communication Systems: the Taxes and Tropism of Micro-organisms and Cells”, M. J. Carlile, ed. Academic Press, London (1975).

    Google Scholar 

  95. R. F. O’Dea, O. H. Viveros, J. Axelrod, S. Aswanikumar, E. Schiffman, & B. A. Corcoran, Nature 272:462 (1978).

    Article  Google Scholar 

  96. M. L. Widerihold, Ann. Rev. Biophys. Bioeng. 5:39 (1976).

    Article  Google Scholar 

  97. M. J. Doughty, & G. H. Dodd, Biochim. Biophys. Acta 451:592 (1976).

    Article  Google Scholar 

  98. A. S. Waggoner, Ann. Rev. Biophys. Bioeng. 8:47 (1979).

    Article  Google Scholar 

  99. J. A. Schmidt, & R. Eckert, Nature 262:713 (1976).

    Article  Google Scholar 

  100. P. Brehm, & R. Eckert, Science 207:1203 (1978).

    Article  Google Scholar 

  101. G. Wagner, in “Encyclopedia of Plant Physiology, New Series, Vol. 7: Physiology of Movements”, W. Haupt, & M. E. Feinleib, eds., Springer Verlag, Heidelberg (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Carlile, M.J. (1980). Sensory Transduction in Aneural Organisms. In: Lenci, F., Colombetti, G. (eds) Photoreception and Sensory Transduction in Aneural Organisms. NATO Advanced Study Institutes Series, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9164-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9164-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9166-5

  • Online ISBN: 978-1-4615-9164-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics