Skip to main content

Theoretical Aspects of Magnetic Field Interactions With Biological Systems

  • Chapter
Book cover Magnetic Field Effect on Biological Systems

Abstract

Magnetic fields could influence cellular development and function through an effect on the diffusion rate of ions across the plasma membrane.1,2 However, a comparison of the Larmor radius of an ion with its mean free path in solution indicates that a stationary magnetic field of megagauss strength would be required to measurably affect diffusion. An experimental approach to this question has been taken, in which magnetically-induced changes in ion diffusion rates have been studied by measuring the conductivity of CsCl solutions in the presence and absence of a magnetic field. For this purpose, an ac bridge circuit was employed in which the frequency was ~103 times lower than the Larmor frequency (~107 Hz at 1 kG). A null-point conductivity measurement was made to detect any imbalance of the bridge circuit resulting from application of a magnetic field, thus signifying an influence of the field on the ionic diffusion coefficient. No imbalance of the bridge circuit was observed following the application of fields of up to 1 kG strength, a result which is in conformity with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liboff, R. L., 1965. A biomagnetic hypothesis. Biophys. J. 5:845–853.

    Article  ADS  Google Scholar 

  2. Liboff, R. L., 1969. Biomagnetic hypotheses. In Biological Effects of Magnetic Fields. Vol. 2, ed., M. F. Barnothy. New York: Plenum Press.

    Google Scholar 

  3. Keynes. R. D., 1958. The nerve impulse and the squid. Sci. Amer. 199(6):83–90.

    Google Scholar 

  4. Hodgkin. A. L. and Huxley. A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544.

    Google Scholar 

  5. Katz, B., 1966. Nerve, muscle and synapse. New York: McGraw-Hill Book Company.

    Google Scholar 

  6. Liberman, E. A., Vaintsvaig. M. N.,and Tsofina, L. M., 1959. The effect of a constant magnetic field on the excitation threshold of isolated frog nerve. Biophysics 4:152–155.

    Google Scholar 

  7. Labes, M. M., 1966. A possible explanation for the effect of magnetic fields on biological systems. Nature 211:968.

    Article  ADS  Google Scholar 

  8. Teucher, I., Baessler, H., and Labes, M. M., 1971. Diffusion through nematic liquid crystals. Nature (London) Phys. Sci. 229:25–26.

    Article  ADS  Google Scholar 

  9. Hakemi, H., and Labes, M. M., 1974. New optical method for studying anisotropic diffusion in liquid crystals. J. Chem. Phvs. 61:4020–4025.

    Article  ADS  Google Scholar 

  10. Hakemi, H., and Labes, M. M., 1975. Self-diffusion coefficients of a nematic liquid crystal via an optical method. J. Chem. Phvs. 63:3708–3712.

    Article  ADS  Google Scholar 

  11. Cope, F. W., 1971. Evidence from activation energies for super-conductive tunneling in biological systems at physiological temperatures. Physiol. Chem. Phys. 3:403–410.

    Google Scholar 

  12. Wolf, A. A., and Halpern, E. H., 1976. On a class of organic super-conductors: A summary of findings. Proc. IEEE 64:357–359.

    Article  Google Scholar 

  13. Wolf, A. A., 1976. Experimental evidence for high-temperature organic fractional superconduction in cholates. Physiol. Chem. Phys. 8(6):495–518.

    Google Scholar 

  14. Antonowicz, K., 1974. Possible superconductivity at room temperature. Nature (London) 247:358–360.

    Article  ADS  Google Scholar 

  15. Cope, F. W., 1973. Biological sensitivity to weak magnetic fields due to biological superconductive Josephson junctions? Physiol. Chem. Phys. 5:173–176.

    Google Scholar 

  16. Antonowicz, K., 1975. The effect of microwaves on dc current in an Al-carbon-Al sandwich. Phys. Status Solidi a28:497–502.

    ADS  Google Scholar 

  17. Cope, F. W., 1976. Superconductivity — a possible mechanism for non-thermal biological effects of microwaves. J. Microwave Power 11:267–270.

    Google Scholar 

  18. Svvenberg, C. E. and Geacintov, N. E., 1973. Organic molecular photophysics, Ch. 10, ed., J. B. Birks. New York: John Wiley and Sons, Inc.

    Google Scholar 

  19. Groff, R. P., Merrifield, R. E., Suna, A., and Avakian, P., 1972. Magnetic hyperfine modulation of dye-sensitized delayed fluorescence in an organic crystal. Phys. Rev. Lett. 29:429–431.

    Article  ADS  Google Scholar 

  20. Groff, R. P., Suna, A., Avakian, P., and Merrifield, R. E., 1974. Magnetic hyperfine modulation of dye-sensitized delayed fluorescence in organic crystals. Phys. Rev. B9:2655–2660.

    ADS  Google Scholar 

  21. Schulten, K. and Weiler, A.. 1978. Exploring fast electron transfer processes by magnetic fields. Biophys. J. 24(1)-.295–305.

    Article  ADS  Google Scholar 

  22. Schulten, K., Staerk, H., Weiler, A., Werner, H. J., and Nickel, B., 1977. Magnetic field dependence of the germinate recombination of radical ion pairs in polar solvents. Z. Phys. Chem. NF101:371–390.

    Google Scholar 

  23. Blankenship, R. E., Schaafsma, T. J., and Parson, W. W., 1977. Magnetic field effects on radical pair intermediates in bacterial photosynthesis. Biochim. Biophys. Acta. 461:297–305.

    Article  Google Scholar 

  24. Hoff. A. J., Rademaker, H., Grondell, R. V., and Duysens, L. N. M., 1977. On the magnetic field dependence of the yield of the triplet state in reaction centers of photosynthetic bacteria. Biochim. Biophys. Acta 460:547–554.

    Article  Google Scholar 

  25. Schulten, K., Swenberg, C. E., and Weiler, A., in press. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Physik. Chem.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Liboff, R.L., Mahlum, D.D., Labes, M.M., Cope, F.W., Swenberg, C.E. (1979). Theoretical Aspects of Magnetic Field Interactions With Biological Systems. In: Tenforde, T.S. (eds) Magnetic Field Effect on Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9143-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9143-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9145-0

  • Online ISBN: 978-1-4615-9143-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics