Skip to main content

Abstract

Of the many experimental reports concerning small laboratory mammals exposed to magnetic fields, few give reliable evidence on the extent and character of biomagnetic interactions.1–4 Overall, the lack of conclusive evidence and a wide variation in the field strength, frequency, and exposure duration used in different studies have resulted in a confused picture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schiff, A., 1978. A quantitative review of human susceptibility to magnetic fields. Lawrence Livermore Laboratory, Livermore, California, Rept. UCID-17773.

    Google Scholar 

  2. Sheppard, A. R. and Eisenbud, M., 1977. Biologic effects of electric and magnetic fields of extremely low frequency. New York: New York University Press.

    Google Scholar 

  3. Kholodov, Y. A., 1971. Influence of magnetic fields on biological objects. National Technical Information Service, Rept. JPRS 63038 (1974).

    Google Scholar 

  4. Barnothy, M. F., ed., 1964 and 1969. Biological effects of magnetic fields. Volumes 1 and 2. New York: Plenum Press.

    Google Scholar 

  5. Odintsov, Y. N., 1965. The effect of a magnetic field on the natural resistance of white mice to Listeria infection. National Technical Information Service, Rept. JPRS 62865 (1974).

    Google Scholar 

  6. Toroptsev, I. V., et al., 1971. Pathologoanatomic characteristics of changes in experimental animals under the influence of magnetic fields. In Influence of magnetic fields on biological objects, ed. Y. Kholodov, National Technical Information Service, Rept. JPRS 63038 (1974).

    Google Scholar 

  7. Udintsev, I. V. and Moroz, V. V., 1974. Response of the pituitary-adrenal system to the action of a variable magnetic field. Bull. Exp. Biol. Med. 77:641–642.

    Google Scholar 

  8. Friedman, H. and Carey, R. J., 1972. Biomagnetic stressor effects in primates. Physiol. Behav. 9:171–173.

    Article  Google Scholar 

  9. Beischer, D. E. and Knepton, J. C, 1966. The electroencephalogram of the squirrel monkey (Saimiri sciureus) in a very high magnetic field. Naval Aerospace Medical Institute, Pensacola, Florida, Rept. NAMI-972.

    Google Scholar 

  10. Young, W. and Gofman, J. W., 1965. Magnetic fields, vagal inhibition and acetylcholinesterase activity. Lawrence Livermore Laboratory, Livermore, California, Rept. UCRL-12389.

    Google Scholar 

  11. Öberg, P. A., 1973. Magnetic stimulation of nerve tissue. Med. Biol. Eng. 11:55–64.

    Google Scholar 

  12. Walcott, C. and Green, R., 1974. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science 184:180–182.

    Article  ADS  Google Scholar 

  13. Keeton, W. T., 1971. Magnets interfere with pigeon homing. Proc. Natl. Acad. Sci. USA 68:102–106.

    Article  ADS  Google Scholar 

  14. Southern, W. E., 1975. Orientation of gull chicks exposed to Project Sanguine’s electromagnetic field. Science 189:143–145.

    Article  ADS  Google Scholar 

  15. Larkin, R. P. and Sutherland, P. J., 1977. Migrating birds respond to Project Seafarer’s electromagnetic field. Science 195:777–779.

    ADS  Google Scholar 

  16. Kalmijn, A. J., 1966. Electro-perception in sharks and rays. Nature (London) 212:1232–1233.

    Article  ADS  Google Scholar 

  17. Bawin, S. M. and Adey, W. R., 1976. Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc. Natl. Acad. Sci. USA 73:1999–2003.

    Article  ADS  Google Scholar 

  18. Blackman, C. F., Elder, J. A., Weil, C. M., Benane, S. G., and Eichinger, D. C, 1977. Two parameters affecting radiation-induced calcium efflux from brain tissue. Abstract M-2, International Symposium on the Biological Effects of Electromagnetic Waves, Air lie, Va., Oct. 30-Nov. 4.

    Google Scholar 

  19. Beischer, D. E., Grissett, J. D., and Mitchell, R. E., 1973. Exposure of man to magnetic fields alternating at extremely low frequency. Naval Aerospace Medical Research Laboratory, Pensacola, Florida, Rept. NAMRL-1180.

    Google Scholar 

  20. Grissett, J. D., Küpper, J. L., Brown, R. J., and Kessler, M. J., 1977. Data supplement to Interim Research Report, June, 1976. Naval Aerospace Medical Research Laboratory, Pensacola, Florida.

    Google Scholar 

  21. de Lorge, J., 1974. A psychobiological study of rhesus monkeys exposed to extremely low frequency-low7 intensity magnetic fields. Naval Aerospace Medical Research Lab., Pensacola, Fla., Rept. NAMRL-1203. (Available from NTIS as AD 000078.)

    Google Scholar 

  22. National Academy of Sciences, 1977. Biologic effects of electric and magnetic fields associated w ith proposed Project Seafarer. Report of the Committee on Biosphere Effects of Extremely-Low-Frequency Radiation, National Research Council, Washington, D.C.

    Google Scholar 

  23. Magnusson, C. E. and Stevens, H. C, 1911. Visual sensations caused by changes in the strength of a magnetic field. Am. J. Physiol. 29:124–136.

    Google Scholar 

  24. Dunlap, K., 1911. Visual sensations from the alternating magnetic field. Science 33:68–71.

    Article  ADS  Google Scholar 

  25. Barlow, H. D., Kohn, H. I., and Walsh, E. G., 1947. Visual sensations aroused by magnetic fields. Am. J. Physiol. 148:372–375.

    Google Scholar 

  26. Seidel, D., 1968. Der Existenzbereich elektrisch und magnetisch induktiv angeregter subjektiver Lichterscheinungen (Phosphene) in Abhängigkeit van äusseren Reizparametern. Elecktromedizin 13:208–211.

    Google Scholar 

  27. Oster, G., 1970. Phosphenes. Sci. Am. 222:82–87.

    Article  Google Scholar 

  28. Lövsund, P., Öberg, P. A., and Nilsson, S. E. G., 1977. A method for the study of retinal ganglion-cell activity induced by ELF magnetic fields. Abstract K-l, International Symposium on the Biological Effects of Electromagnetic Waves, Air lie, Va., Oct. 30Nov. 4.

    Google Scholar 

  29. Lövsund, P., Öberg, P. A., and Nilsson, S. E. G., 1977. Quantitative determination of threshold values of magnetophosphenes. Abstract K-2, International Symposium on the Biological Effects of Electromagnetic Waves, Airlie, Va., Oct. 30 — Nov. 4.

    Google Scholar 

  30. Thach, J. S., 1968. A behavioral effect of intense dc electromagnetic fields. In Use of Nonhuman Primates in Drug Evaluation, ed. H. Vagtborg, pp. 347–356. Austin: University of Texas Press.

    Google Scholar 

  31. de Lorge, J., 1972. Operant behavior of rhesus monkeys in the presence of extremely low frequency-low intensity magnetic and electric fields: Experiment 1. Naval Aerospace Medical Research Lab., Pensacola, Fla., Rept. NAMRL-1155. (Available from NTIS as AD 754058.)

    Google Scholar 

  32. de Lorge, J., 1973a. Operant behavior of rhesus monkeys in the presence of extremely low frequency-low intensity magnetic and electric fields: Experiment 2. Naval Aerospace Medical Research Lab., Pensacola, Fla., Rept. NAMRL-1179. (Available from NTIS as AD 764532.)

    Google Scholar 

  33. de Lorge, J., 1973b. Operant behavior of rhesus monkeys in the presence of extremely low frequency-low intensity magnetic and electric fields: Experiment 3. Naval Aerospace Medical Research Lab., Pensacola, Fla., Rept. NAMRL-1196. (Available from NTIS as AD 774106.)

    Google Scholar 

  34. de Lorge, J., 1974. A psychobiological study of rhesus monkeys exposed to extremely low frequency-low intensity magnetic fields. Naval Aerospace Medical Research Lab., Pensacola, Fla., Rept. NAMRL-1203. (Available from NTIS as AD 000078.)

    Google Scholar 

  35. Nahas, G. G. Boccalon, H., Berryer, P., and Wagner, B., 1975. Effects in rodents of a one-month exposure to magnetic fields (200–1200 gauss). Aviat. Space Environ. Med. 46:1161–1163.

    Google Scholar 

  36. Eiselein, B. S., Boutell, H. M., and Biggs, M. W., 1961. Biological effects of magnetic fields — negative results. Aerosp. Med. 32:383–386.

    Google Scholar 

  37. Barnothy, M. F. (ed.), 1964. Biological effects of magnetic fields. Vol. 1. New York: Plenum Press.

    Google Scholar 

  38. Barnothy, J. M., Barnothy, M. F., and Boszormenyi-Nagy, I., 1956. Influence of a magnetic field upon the leukocytes of the mouse. Nature (London) 181:1785–1786.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Sheppard, A.R., de Lorge, J., Vahas, G.G., Biggs, M.W. (1979). Magnetic Effects on Mammals. In: Tenforde, T.S. (eds) Magnetic Field Effect on Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9143-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9143-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9145-0

  • Online ISBN: 978-1-4615-9143-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics